赞
踩
(1)下载源码 dlib C++ Library 生成编译工程(使用cmake),可以选择gup选项,需要cuda9.0支持,点击generate后,Open project使用vs编译即可。
更多内容关注微信公众号:ML_Study
编译完成后创建工程,配置相关头文件,包含dlib文件夹的文件夹添加到#include搜索路径,将静态库加入工程,即可编译。
(2)也可将下载的源码直接加入工程,添加all目录的文件,即可在工程一同编译
但速度较慢。具体步骤:
(1),使用Visual Studio 2015或更新版本在Windows上编译只需创建一个空控制台项目。然后添加dlib/all/source.cpp。
(2),将包含dlib文件夹的文件夹添加到#include搜索路径。然后,您可以通过将示例程序添加到项目中来编译它。
(3),如果需要读取libjpeg和libpng图像文件,在Visual Studio中,dlib只使用jpeg和png文件最简单的方法是
将dlib/external文件夹中的所有libjpeg、libpng和zlib源文件添加到项目中,并定义DLIB_PNG_SUPPORT和DLIB_JPEG_SUPPORT预处理器指令。
(1)下面是dlib提供的人脸识别例程,该算法在LFW上的人脸识别率为99.38%,官网也有训练方法,使用的是嵌入网络将人脸映射到128维子空间,通过对向量的比较判定是否为同一人,经验阈值为小于0.6则判定为同一人。
人脸关键点检测回归参数 下载
shape_predictor_5_face_landmarks.dat
与深度人脸特征提取的模型参数下载
dlib_face_recognition_resnet_model_v1.dat
- #include <dlib/dnn.h>
- #include <dlib/gui_widgets.h>
- #include <dlib/clustering.h>
- #include <dlib/string.h>
- #include <dlib/image_io.h>
- #include <dlib/image_processing/frontal_face_detector.h>
-
- using namespace dlib;
- using namespace std;
-
- // ----------------------------------------------------------------------------------------
-
- // The next bit of code defines a ResNet network. It's basically copied
- // and pasted from the dnn_imagenet_ex.cpp example, except we replaced the loss
- // layer with loss_metric and made the network somewhat smaller. Go read the introductory
- // dlib DNN examples to learn what all this stuff means.
- //
- // Also, the dnn_metric_learning_on_images_ex.cpp example shows how to train this network.
- // The dlib_face_recognition_resnet_model_v1 model used by this example was trained using
- // essentially the code shown in dnn_metric_learning_on_images_ex.cpp except the
- // mini-batches were made larger (35x15 instead of 5x5), the iterations without progress
- // was set to 10000, and the training dataset consisted of about 3 million images instead of
- // 55. Also, the input layer was locked to images of size 150.
- template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
- using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
-
- template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
- using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
-
- template <int N, template <typename> class BN, int stride, typename SUBNET>
- using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
-
- template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>;
- template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;
-
- template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
- template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
- template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
- template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
- template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;
-
- using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<
- alevel0<
- alevel1<
- alevel2<
- alevel3<
- alevel4<
- max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,
- input_rgb_image_sized<150>
- >>>>>>>>>>>>;
-
- // ----------------------------------------------------------------------------------------
-
- std::vector<matrix<rgb_pixel>> jitter_image(
- const matrix<rgb_pixel>& img
- );
-
- // ----------------------------------------------------------------------------------------
-
- int main(int argc, char** argv) try
- {
- if (argc != 2)
- {
- cout << "Run this example by invoking it like this: " << endl;
- cout << " ./dnn_face_recognition_ex faces/bald_guys.jpg" << endl;
- cout << endl;
- cout << "You will also need to get the face landmarking model file as well as " << endl;
- cout << "the face recognition model file. Download and then decompress these files from: " << endl;
- cout << "http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2" << endl;
- cout << "http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2" << endl;
- cout << endl;
- return 1;
- }
-
- // The first thing we are going to do is load all our models. First, since we need to
- // find faces in the image we will need a face detector:
- frontal_face_detector detector = get_frontal_face_detector();
- // We will also use a face landmarking model to align faces to a standard pose: (see face_landmark_detection_ex.cpp for an introduction)
- shape_predictor sp;
- deserialize("shape_predictor_5_face_landmarks.dat") >> sp;
- // And finally we load the DNN responsible for face recognition.
- anet_type net;
- deserialize("dlib_face_recognition_resnet_model_v1.dat") >> net;
-
- matrix<rgb_pixel> img;
- load_image(img, argv[1]);
- // Display the raw image on the screen
- image_window win(img);
-
- // Run the face detector on the image of our action heroes, and for each face extract a
- // copy that has been normalized to 150x150 pixels in size and appropriately rotated
- // and centered.
- std::vector<matrix<rgb_pixel>> faces;
- for (auto face : detector(img))
- {
- auto shape = sp(img, face);
- matrix<rgb_pixel> face_chip;
- extract_image_chip(img, get_face_chip_details(shape,150,0.25), face_chip);
- faces.push_back(move(face_chip));
- // Also put some boxes on the faces so we can see that the detector is finding
- // them.
- win.add_overlay(face);
- }
-
- if (faces.size() == 0)
- {
- cout << "No faces found in image!" << endl;
- return 1;
- }
-
- // This call asks the DNN to convert each face image in faces into a 128D vector.
- // In this 128D vector space, images from the same person will be close to each other
- // but vectors from different people will be far apart. So we can use these vectors to
- // identify if a pair of images are from the same person or from different people.
- std::vector<matrix<float,0,1>> face_descriptors = net(faces);
-
-
- // In particular, one simple thing we can do is face clustering. This next bit of code
- // creates a graph of connected faces and then uses the Chinese whispers graph clustering
- // algorithm to identify how many people there are and which faces belong to whom.
- std::vector<sample_pair> edges;
- for (size_t i = 0; i < face_descriptors.size(); ++i)
- {
- for (size_t j = i; j < face_descriptors.size(); ++j)
- {
- // Faces are connected in the graph if they are close enough. Here we check if
- // the distance between two face descriptors is less than 0.6, which is the
- // decision threshold the network was trained to use. Although you can
- // certainly use any other threshold you find useful.
- if (length(face_descriptors[i]-face_descriptors[j]) < 0.6)
- edges.push_back(sample_pair(i,j));
- }
- }
- std::vector<unsigned long> labels;
- const auto num_clusters = chinese_whispers(edges, labels);
- // This will correctly indicate that there are 4 people in the image.
- cout << "number of people found in the image: "<< num_clusters << endl;
-
-
- // Now let's display the face clustering results on the screen. You will see that it
- // correctly grouped all the faces.
- std::vector<image_window> win_clusters(num_clusters);
- for (size_t cluster_id = 0; cluster_id < num_clusters; ++cluster_id)
- {
- std::vector<matrix<rgb_pixel>> temp;
- for (size_t j = 0; j < labels.size(); ++j)
- {
- if (cluster_id == labels[j])
- temp.push_back(faces[j]);
- }
- win_clusters[cluster_id].set_title("face cluster " + cast_to_string(cluster_id));
- win_clusters[cluster_id].set_image(tile_images(temp));
- }
-
-
-
-
- // Finally, let's print one of the face descriptors to the screen.
- cout << "face descriptor for one face: " << trans(face_descriptors[0]) << endl;
-
- // It should also be noted that face recognition accuracy can be improved if jittering
- // is used when creating face descriptors. In particular, to get 99.38% on the LFW
- // benchmark you need to use the jitter_image() routine to compute the descriptors,
- // like so:
- matrix<float,0,1> face_descriptor = mean(mat(net(jitter_image(faces[0]))));
- cout << "jittered face descriptor for one face: " << trans(face_descriptor) << endl;
- // If you use the model without jittering, as we did when clustering the bald guys, it
- // gets an accuracy of 99.13% on the LFW benchmark. So jittering makes the whole
- // procedure a little more accurate but makes face descriptor calculation slower.
-
-
- cout << "hit enter to terminate" << endl;
- cin.get();
- }
- catch (std::exception& e)
- {
- cout << e.what() << endl;
- }
-
- // ----------------------------------------------------------------------------------------
-
- std::vector<matrix<rgb_pixel>> jitter_image(
- const matrix<rgb_pixel>& img
- )
- {
- // All this function does is make 100 copies of img, all slightly jittered by being
- // zoomed, rotated, and translated a little bit differently. They are also randomly
- // mirrored left to right.
- thread_local dlib::rand rnd;
-
- std::vector<matrix<rgb_pixel>> crops;
- for (int i = 0; i < 100; ++i)
- crops.push_back(jitter_image(img,rnd));
-
- return crops;
- }
(2)测试结果
测试图:
结果
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。