赞
踩
视频编辑和修复确实是随着电子产品的普及变得越来越重要的技能。有许多视频编辑工具可以帮助人们轻松完成这些任务如:Adobe Premiere Pro,Final Cut Pro X,Davinci Resolve,HitFilm Express,它们都提供一些视频修复功能,但并不适合没有太多专业技术的用户。
至于视频目标移除、水印移除、掩码补全和视频外扩等高级功能,通常需要使用更专业的图像处理工具,如Adobe After Effects或Adobe Photoshop,这些工具需要一定的学习曲线。
ProPainter是由南洋理工大学的S-Lab团队开发的一款视频智能修复算法,ProPainter完成:视频目标移除、视频水印移除、视频掩码补全、视频外扩等多个实用功能!
项目主页:https://shangchenzhou.com/projects/ProPainter/
论文链接:https://arxiv.org/abs/2309.03897
代码链接:https://github.com/sczhou/ProPainter
官方的项目效果:
视频目标移除/视频水印移除/视频掩码补全
如果项目git或者模型下载不下来,可以使用csdn上传好的资源:https://download.csdn.net/download/matt45m/88385370
视频修复是一项任务,旨在通过填补缺失区域或移除不需要的内容,来修复视频中的损坏或缺失部分。这个领域可以分为两个主要方向:对象移除和对象补全。
在视频修复中,有两种主要的算法方法:传统方法和深度学习方法。传统方法依赖于纹理合成技术,它们通过从周围的视频帧中复制纹理信息来填补缺失区域。另一方面是深度学习方法,深度学习方法已经在视频修复中取得了显著的进展。生成对抗网络(GANs)、变分自编码器(VAEs)和Transformer等神经网络架构已被广泛应用于视频修复任务。这些方法可以自动学习从输入视频中生成高质量修复结果的映射关系,使修复过程更加智能化。
流传播和时空Transformer是视频修复任务中的两个主要机制。尽管它们在视频修复中非常有用,但仍然存在一些限制,这些限制对它们的性能产生了影响。传统的基于传播的方法通常在图像或特征域中执行,这可能导致由于不准确的光流而引起的空间不对齐问题。此外,内存和计算资源的限制可能会限制特征传播和视频Transformer的时间范围,从而阻止了对远程帧的对应信息的探索。
为了应对这些限制,ProPainter算法应运而生。该算法包括增强的流传播和高效的Transformer组件,以提高视频修复性能。ProPainter算法包括三个部件:
循环流完成(Cyclic Flow Completion):首先,ProPainter采用高效的循环流完成网络来修复损坏的光流场。这有助于处理光流信息的不准确性,确保在视频修复中有准确的流场信息可用。
双域传播(Bimodal Propagation):接下来,在图像和特征域中执行传播,并且这两个域是联合训练的。这一方法允许算法探索来自全局和局部时间框架的对应关系,从而提供更可靠和有效的传播。这种联合域的传播有助于更好地理解和修复视频中的内容。
掩模引导稀疏变压器(Mask-Guided Sparse Transformer):最后,ProPainter引入了掩模引导稀疏变压器块,以优化特征传播。这些块使用时空注意力来优化传播的特征,并采用仅考虑令牌子集的稀疏策略。这样做旨在提高算法的效率,减少内存消耗,同时保持高性能水平。
从论文中可以知道,这些图形描述了ProPainter算法的关键优点和性能,以下是对每张图的简要解释:
从论文中,可以看到ProPainter算法的工作流程:
我这里测试部署的系统win 10, cuda 11.8,cudnn 8.5,GPU是RTX 3060, 8G显存,使用conda创建虚拟环境。
官方给的环境配置:
CUDA >= 9.2
PyTorch >= 1.7.1
Torchvision >= 0.8.2
创建并激活一个虚拟环境:
conda create -n ProPainter python==3.8
activate ProPainter
下载项目:
git clone https://github.com/sczhou/ProPainter.git
为了避免Pytorch与GPU不兼容的问题,这里单独安装torch:
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt
模型下载:
https://github.com/sczhou/ProPainter/releases/tag/v0.1.0
下载之后,放到项目里面:
从官方给的测试,可以看到官方把视频拆分成一帧帧图像,加上要移除目标的mask图,格式如下:
单图如下:
这一步可以借助 Segment-and-Track Anything这个算法完成,关于Segment-and-Track Anything的使用与环境部署可以看我之前的博客,Segment-and-Track Anything转出的的图像是不是黑白mask图像,可以用以下代码进行转换:
然后把mask变成黑和白两种
import os
import numpy as np
import cv2
from glob import glob
from tqdm import tqdm
root_dir = 'xxx/xxxx/data/'
name = 'tao'
msk_folder = f'{root_dir}/{name}/{name}_masks'
img_folder = f'{root_dir}/{name}/{name}'
frg_mask_folder = f'{root_dir}/{name}/{name}_masks_0'
bkg_mask_folder = f'{root_dir}/{name}/{name}_masks_1'
os.makedirs(frg_mask_folder, exist_ok=True)
os.makedirs(bkg_mask_folder, exist_ok=True)
files = glob(msk_folder + '/*.png')
num = len(files)
for i in tqdm(range(num)):
file_n = os.path.basename(files[i])
mask = cv2.imread(os.path.join(msk_folder, file_n), 0)
mask[mask > 0] = 1
cv2.imwrite(os.path.join(frg_mask_folder, file_n), mask * 255)
bg_mask = mask.copy()
bg_mask[bg_mask == 0] = 127
bg_mask[bg_mask == 255] = 0
bg_mask[bg_mask == 127] = 255
cv2.imwrite(os.path.join(bkg_mask_folder, file_n), bg_mask)
然后执行测试代码:
python inference_propainter.py --video inputs/object_removal/bmx-trees --mask inputs/object_removal/bmx-trees_mask
如果图像太大了,内存爆炸,则要指定压缩大小:
python inference_propainter.py --video inputs/object_removal/bmx-trees --mask inputs/object_removal/bmx-trees_mask --height 240 --width 432
分割出水印的位置的mask图像,这步可以使用 Segment Anything这个项目完成:
然后执行:
python inference_propainter.py --video inputs/video_completion/running_car.mp4 --mask inputs/video_completion/mask_square.png --height 240 --width 432
测试效果:
视频目标移动与祛水印
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。