赞
踩
使用苏神的bert4keras,预训练后产生了多个文件,但是在训练加载预训练模型的时候出错Key bert/embeddings/word_embeddings not found in checkpoint
(1)pretrain.py文件
# 预训练脚本 import os os.environ['TF_KERAS'] = '1' # 必须使用tf.keras import tensorflow as tf from bert4keras.backend import keras, K from bert4keras.models import build_transformer_model from bert4keras.optimizers import Adam from bert4keras.optimizers import extend_with_gradient_accumulation from bert4keras.optimizers import extend_with_layer_adaptation from bert4keras.optimizers import extend_with_piecewise_linear_lr from bert4keras.optimizers import extend_with_weight_decay from keras.layers import Input, Lambda from keras.models import Model from data_utils import TrainingDatasetRoBERTa # 语料路径和模型保存路径 model_saved_path = 'pre_models/bert_model.ckpt' corpus_paths = [f'corpus_tfrecord/corpus.{i}.tfrecord' for i in range(10)] # 其他配置 sequence_length = 512 batch_size = 64 config_path = 'pre_models/bert_config.json' checkpoint_path = None # 如果从零训练,就设为None learning_rate = 0.00176 weight_decay_rate = 0.01 num_warmup_steps = 3125 num_train_steps = 5000 steps_per_epoch = 100 grad_accum_steps = 16 # 大于1即表明使用梯度累积 epochs = num_train_steps * grad_accum_steps // steps_per_epoch exclude_from_weight_decay = ['Norm', 'bias'] tpu_address = None # 如果用多GPU跑,直接设为None which_optimizer = 'lamb' # adam 或 lamb,均自带weight decay lr_schedule = { num_warmup_steps * grad_accum_steps: 1.0, num_train_steps * grad_accum_steps: 0.0, } floatx = K.floatx() # 读取数据集,构建数据张量 dataset = TrainingDatasetRoBERTa.load_tfrecord( record_names=corpus_paths, sequence_length=sequence_length, batch_size=batch_size // grad_accum_steps, ) def build_transformer_model_with_mlm(): """带mlm的bert模型。""" bert = build_transformer_model( config_path, with_mlm='linear', return_keras_model=False ) proba = bert.model.output # 辅助输入 token_ids = Input(shape=(None,), dtype='int64', name='token_ids') # 目标id is_masked = Input(shape=(None,), dtype=floatx, name='is_masked') # mask标记 def mlm_loss(inputs): """计算loss的函数,需要封装为一个层。""" y_true, y_pred, mask = inputs loss = K.sparse_categorical_crossentropy( y_true, y_pred, from_logits=True ) loss = K.sum(loss * mask) / (K.sum(mask) + K.epsilon()) return loss def mlm_acc(inputs): """计算准确率的函数,需要封装为一个层 """ y_true, y_pred, mask = inputs y_true = K.cast(y_true, floatx) acc = keras.metrics.sparse_categorical_accuracy(y_true, y_pred) acc = K.sum(acc * mask) / (K.sum(mask) + K.epsilon()) return acc mlm_loss = Lambda(mlm_loss, name='mlm_loss')([token_ids, proba, is_masked]) mlm_acc = Lambda(mlm_acc, name='mlm_acc')([token_ids, proba, is_masked]) train_model = Model( bert.model.inputs + [token_ids, is_masked], [mlm_loss, mlm_acc] ) loss = { 'mlm_loss': lambda y_true, y_pred: y_pred, 'mlm_acc': lambda y_true, y_pred: K.stop_gradient(y_pred), } return bert, train_model, loss def build_transformer_model_for_pretraining(): """构建训练模型,通用于TPU/GPU 注意全程要用keras标准的层写法,一些比较灵活的“移花接木”式的 写法可能会在TPU上训练失败。此外,要注意的是TPU并非支持所有 tensorflow算子,尤其不支持动态(变长)算子,因此编写相应运算 时要格外留意。 """ bert, train_model, loss = build_transformer_model_with_mlm() # 优化器 optimizer = extend_with_weight_decay(Adam) if which_optimizer == 'lamb': optimizer = extend_with_layer_adaptation(optimizer) optimizer = extend_with_piecewise_linear_lr(optimizer) optimizer_params = { 'learning_rate': learning_rate, 'lr_schedule': lr_schedule, 'weight_decay_rate': weight_decay_rate, 'exclude_from_weight_decay': exclude_from_weight_decay, 'bias_correction': False, } if grad_accum_steps > 1: optimizer = extend_with_gradient_accumulation(optimizer) optimizer_params['grad_accum_steps'] = grad_accum_steps optimizer = optimizer(**optimizer_params) # 模型定型 train_model.compile(loss=loss, optimizer=optimizer) # 如果传入权重,则加载。注:须在此处加载,才保证不报错。 if checkpoint_path is not None: bert.load_weights_from_checkpoint(checkpoint_path) return train_model,bert if tpu_address is None: # 单机多卡模式(多机多卡也类似,但需要硬软件配合,请参考https://tf.wiki) strategy = tf.distribute.MirroredStrategy() else: # TPU模式 resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu=tpu_address ) tf.config.experimental_connect_to_host(resolver.master()) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.experimental.TPUStrategy(resolver) with strategy.scope(): train_model,bert = build_transformer_model_for_pretraining() train_model.summary() class ModelCheckpoint(keras.callbacks.Callback): """自动保存最新模型。""" def on_epoch_end(self, epoch, logs=None): self.model.save_weights(model_saved_path, overwrite=True) checkpoint = ModelCheckpoint() # 保存模型 csv_logger = keras.callbacks.CSVLogger('training.log') # 记录日志 # 模型训练 train_model.fit( dataset, steps_per_epoch=steps_per_epoch, epochs=epochs, callbacks=[checkpoint, csv_logger], )
(2)train.py文件
在train.py中加载模型时,报错Key bert/embeddings/word_embeddings not found in checkpoint
# 加载预训练模型
bert = build_transformer_model(
config_path=BERT_CONFIG_PATH,
checkpoint_path=model_saved_path,
return_keras_model=False,
)
根据苏神的博客介绍到,需要把预训练的模型加载后,重新生成权重模型,再使用该权重模型,就不会出错。所以在pretrain.py文件中最后加两行代码,并注释掉train_model.fit。重新执行一遍该文件。再执行train.py就不会出现问题
# 以上代码一样,此处省略
# 、、、、
# 模型训练
# train_model.fit(
# dataset,
# steps_per_epoch=steps_per_epoch,
# epochs=epochs,
# callbacks=[checkpoint, csv_logger],
# )
train_model.load_weights(model_saved_path)
bert.save_weights_as_checkpoint(filename='bert_model/bert_model.ckpt')
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。