当前位置:   article > 正文

动手学深度学习3.4 softmax回归-笔记&练习(PyTorch)

动手学深度学习3.4 softmax回归-笔记&练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。

本节课程地址:09 Softmax 回归 + 损失函数 + 图片分类数据集【动手学深度学习v2】_哔哩哔哩_bilibili

本节教材地址:3.4. softmax回归 — 动手学深度学习 2.0.0 documentation (d2l.ai)

本节开源代码:...>d2l-zh>pytorch>chapter_linear-networks>softmax-regression.ipynb


softmax回归

3.1节 中我们介绍了线性回归。 随后,在 3.2节 中我们从头实现线性回归。 然后,在 3.3节 中我们使用深度学习框架的高级API简洁实现线性回归。

回归可以用于预测多少的问题。 比如预测房屋被售出价格,或者棒球队可能获得的胜场数,又或者患者住院的天数。

事实上,我们也对分类问题感兴趣:不是问“多少”,而是问“哪一个”:

  • 某个电子邮件是否属于垃圾邮件文件夹?
  • 某个用户可能注册不注册订阅服务?
  • 某个图像描绘的是驴、狗、猫、还是鸡?
  • 某人接下来最有可能看哪部电影?

通常,机器学习实践者用分类这个词来描述两个有微妙差别的问题: 1. 我们只对样本的“硬性”类别感兴趣,即属于哪个类别; 2. 我们希望得到“软性”类别,即得到属于每个类别的概率。 这两者的界限往往很模糊。其中的一个原因是:即使我们只关心硬类别,我们仍然使用软类别的模型。

分类问题

我们从一个图像分类问题开始。 假设每次输入是一个 2×2 的灰度图像。 我们可以用一个标量表示每个像素值,每个图像对应四个特征 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/513982
推荐阅读
相关标签