赞
踩
Python版本的词云生成模块从2015年的v1.0到现在,已经更新到了v1.7。
下载请移步至:https://pypi.org/project/wordcloud/
- import jieba
- import wordcloud
-
- w = wordcloud.WordCloud(
- width=600,
- height=600,
- background_color='white',
- font_path='msyh.ttc'
- )
- text = '看到此标题,我也是感慨万千 首先弄清楚搞IT和被IT搞,谁是搞IT的?马云就是,马化腾也是,刘强东也是,他们都是叫搞IT的, 但程序员只是被IT搞的人,可以比作盖楼砌砖的泥瓦匠,你想想,四十岁的泥瓦匠能跟二十左右岁的年轻人较劲吗?如果你是老板你会怎么做?程序员只是技术含量高的泥瓦匠,社会是现实的,社会的现实是什么?利益驱动。当你跑的速度不比以前快了时,你就会被挨鞭子赶,这种窘境如果在做程序员当初就预料到的话,你就会知道,到达一定高度时,你需要改变行程。 程序员其实真的不是什么好职业,技术每天都在更新,要不停的学,你以前学的每天都在被淘汰,加班可能是标配了吧。 热点,你知道什么是热点吗?社会上啥热就是热点,我举几个例子:在早淘宝之初,很多人都觉得做淘宝能让自己发展,当初的规则是产品按时间轮候展示,也就是你的商品上架时间一到就会被展示,不论你星级多高。这种一律平等的条件固然好,但淘宝随后调整了显示规则,对产品和店铺,销量进行了加权,一下导致小卖家被弄到了很深的胡同里,没人看到自己的产品,如何卖?做广告费用也非常高,入不敷出,想必做过淘宝的都知道,再后来淘宝弄天猫,显然,天猫是上档次的商城,不同于淘宝的摆地摊,因为摊位费涨价还闹过事,闹也白闹,你有能力就弄,没能力就淘汰掉。前几天淘宝又推出C2M,客户反向定制,客户直接挂钩大厂家,没你小卖家什么事。 后来又出现了微商,在微商出现当天我就知道这东西不行,它比淘宝假货还下三滥.我对TX一直有点偏见,因为骗子都使用QQ 我说这么多只想说一个事,世界是变化的,你只能适应变化,否则就会被淘汰。 还是回到热点这个话题,育儿嫂这个职位有很多人了解吗?前几年放开二胎后,这个职位迅速串红,我的一个亲戚初中毕业,现在已经月入一万五,职务就是照看刚出生的婴儿28天,节假日要双薪。 你说这难到让我一个男的去当育儿嫂吗?扯,我只是说热点问题。你没踩在热点上,你赚钱就会很费劲 这两年的热点是什么?短视频,你可以看到抖音的一些作品根本就不是普通人能实现的,说明专业级人才都开始努力往这上使劲了。 我只会编程,别的不会怎么办?那你就去编程。没人用了怎么办?你看看你自己能不能雇佣你自己 学会适应社会,学会改变自己去适应社会 最后说一句:科大讯飞的刘鹏说的是对的。那我为什么还做程序员?他可以完成一些原始积累,只此而已。'
- new_str = ' '.join(jieba.lcut(text))
- w.generate(new_str)
- w.to_file('x.png')
wordcloud源码中生成词云图的主要步骤有:
1、分割词组
2、生成词云
3、保存图片
我们从 generate(self, text)切入,发现它仅仅调用了自身对象的一个方法 self.generate_from_text(text)
- def generate_from_text(self, text):
- """Generate wordcloud from text.
- """
- words = self.process_text(text) # 分割词组
- self.generate_from_frequencies(words) # 生成词云的主要方法(重点分析)
- return self
process_text()源码如下,处理的逻辑比较简单:分割词组、去除数字、去除's、去除数字、去除短词、去除禁用词等。
- def process_text(self, text):
- """Splits a long text into words, eliminates the stopwords.
- Parameters
- ----------
- text : string
- The text to be processed.
- Returns
- -------
- words : dict (string, int)
- Word tokens with associated frequency.
- ..versionchanged:: 1.2.2
- Changed return type from list of tuples to dict.
- Notes
- -----
- There are better ways to do word tokenization, but I don't want to
- include all those things.
- """
-
- flags = (re.UNICODE if sys.version < '3' and type(text) is unicode else 0)
-
- regexp = self.regexp if self.regexp is not None else r"\w[\w']+"
-
- # 获得分词
- words = re.findall(regexp, text, flags)
- # 去除 's
- words = [word[:-2] if word.lower().endswith("'s") else word for word in words]
- # 去除数字
- if not self.include_numbers:
- words = [word for word in words if not word.isdigit()]
- # 去除短词,长度小于指定值min_word_length的词,被视为短词,筛除
- if self.min_word_length:
- words = [word for word in words if len(word) >= self.min_word_length]
- # 去除禁用词
- stopwords = set([i.lower() for i in self.stopwords])
- if self.collocations:
- word_counts = unigrams_and_bigrams(words, stopwords, self.normalize_plurals, self.collocation_threshold)
- else:
- # remove stopwords
- words = [word for word in words if word.lower() not in stopwords]
- word_counts, _ = process_tokens(words, self.normalize_plurals)
-
- return word_counts
generate_from_frequencies(self, frequencies, max_font_size=None) 方法体内的代码比较多,总体上分为以下几步:
1、排序
2、词频归一化
3、创建绘图对象
4、确定初始字体大小(字号)
5、扩展单词集
6、确定每个单词的字体大小、位置、旋转角度、颜色等信息
源码如下(根据个人理解已添加中文注释):
- def generate_from_frequencies(self, frequencies, max_font_size=None):
- """Create a word_cloud from words and frequencies.
- Parameters
- ----------
- frequencies : dict from string to float
- A contains words and associated frequency.
- max_font_size : int
- Use this font-size instead of self.max_font_size
- Returns
- -------
- self
- """
- # make sure frequencies are sorted and normalized
- # 1、排序
- # 对“单词-频率”列表按频率降序排序
- frequencies = sorted(frequencies.items(), key=itemgetter(1), reverse=True)
- if len(frequencies) <= 0:
- raise ValueError("We need at least 1 word to plot a word cloud, "
- "got %d." % len(frequencies))
- # 确保单词数在设置的最大范围内,超出的部分被舍弃掉
- frequencies = frequencies[:self.max_words]
-
- # largest entry will be 1
- # 取第一个单词的频率作为最大词频
- max_frequency = float(frequencies[0][1])
-
- # 2、词频归一化
- # 把所有单词的词频归一化,由于单词已经排序,所以归一化后应该是这样的:[('xxx', 1),('xxx', 0.96),('xxx', 0.87),...]
- frequencies = [(word, freq / max_frequency)
- for word, freq in frequencies]
-
- # 随机对象,用于产生一个随机数,来确定是否旋转90度
- if self.random_state is not None:
- random_state = self.random_state
- else:
- random_state = Random()
-
- if self.mask is not None:
- boolean_mask = self._get_bolean_mask(self.mask)
- width = self.mask.shape[1]
- height = self.mask.shape[0]
- else:
- boolean_mask = None
- height, width = self.height, self.width
- # 用于查找单词可能放置的位置,例如图片有效范围内的空白处(非文字区域)
- occupancy = IntegralOccupancyMap(height, width, boolean_mask)
-
- # 3、创建绘图对象
- # create image
- img_grey = Image.new("L", (width, height))
- draw = ImageDraw.Draw(img_grey)
- img_array = np.asarray(img_grey)
- font_sizes, positions, orientations, colors = [], [], [], []
-
- last_freq = 1.
-
- # 4、确定初始字号
- # 确定最大字号
- if max_font_size is None:
- # if not provided use default font_size
- max_font_size = self.max_font_size
-
- # 如果最大字号是空的,就需要确定一个最大字号作为初始字号
- if max_font_size is None:
- # figure out a good font size by trying to draw with
- # just the first two words
- if len(frequencies) == 1:
- # we only have one word. We make it big!
- font_size = self.height
- else:
- # 递归进入当前函数,以获得一个self.layout_,其中只有前两个单词的词频信息
- # 使用这两个词频计算出一个初始字号
- self.generate_from_frequencies(dict(frequencies[:2]),
- max_font_size=self.height)
- # find font sizes
- sizes = [x[1] for x in self.layout_]
- try:
- font_size = int(2 * sizes[0] * sizes[1]
- / (sizes[0] + sizes[1]))
- # quick fix for if self.layout_ contains less than 2 values
- # on very small images it can be empty
- except IndexError:
- try:
- font_size = sizes[0]
- except IndexError:
- raise ValueError(
- "Couldn't find space to draw. Either the Canvas size"
- " is too small or too much of the image is masked "
- "out.")
- else:
- font_size = max_font_size
-
- # we set self.words_ here because we called generate_from_frequencies
- # above... hurray for good design?
- self.words_ = dict(frequencies)
-
- # 5、扩展单词集
- # 如果单词数不足最大值,则扩展单词集以达到最大值
- if self.repeat and len(frequencies) < self.max_words:
- # pad frequencies with repeating words.
- times_extend = int(np.ceil(self.max_words / len(frequencies))) - 1
- # get smallest frequency
- frequencies_org = list(frequencies)
- downweight = frequencies[-1][1]
- # 扩展单词数,词频会保持原有词频的递减规则。
- for i in range(times_extend):
- frequencies.extend([(word, freq * downweight ** (i + 1))
- for word, freq in frequencies_org])
-
- # 6、确定每一个单词的字体大小、位置、旋转角度、颜色等信息
- # start drawing grey image
- for word, freq in frequencies:
- if freq == 0:
- continue
- # select the font size
- rs = self.relative_scaling
- if rs != 0:
- font_size = int(round((rs * (freq / float(last_freq))
- + (1 - rs)) * font_size))
- if random_state.random() < self.prefer_horizontal:
- orientation = None
- else:
- orientation = Image.ROTATE_90
- tried_other_orientation = False
- # 寻找可能放置的位置,如果寻找一次,没有找到,则尝试改变文字方向或缩小字体大小,继续寻找。
- # 直到找到放置位置或者字体大小超出字号下限
- while True:
- # try to find a position
- font = ImageFont.truetype(self.font_path, font_size)
- # transpose font optionally
- transposed_font = ImageFont.TransposedFont(
- font, orientation=orientation)
- # get size of resulting text
- box_size = draw.textsize(word, font=transposed_font)
- # find possible places using integral image:
- result = occupancy.sample_position(box_size[1] + self.margin,
- box_size[0] + self.margin,
- random_state)
- if result is not None or font_size < self.min_font_size:
- # either we found a place or font-size went too small
- break
- # if we didn't find a place, make font smaller
- # but first try to rotate!
- if not tried_other_orientation and self.prefer_horizontal < 1:
- orientation = (Image.ROTATE_90 if orientation is None else
- Image.ROTATE_90)
- tried_other_orientation = True
- else:
- font_size -= self.font_step
- orientation = None
-
- if font_size < self.min_font_size:
- # we were unable to draw any more
- break
-
- # 收集该词的信息:字体大小、位置、旋转角度、颜色
- x, y = np.array(result) + self.margin // 2
- # actually draw the text
- # 此处绘制图像仅仅用于寻找放置单词的位置,而不是最终的词云图片。词云图片是在另一个函数中生成:to_image
- draw.text((y, x), word, fill="white", font=transposed_font)
- positions.append((x, y))
- orientations.append(orientation)
- font_sizes.append(font_size)
- colors.append(self.color_func(word, font_size=font_size,
- position=(x, y),
- orientation=orientation,
- random_state=random_state,
- font_path=self.font_path))
- # recompute integral image
- if self.mask is None:
- img_array = np.asarray(img_grey)
- else:
- img_array = np.asarray(img_grey) + boolean_mask
- # recompute bottom right
- # the order of the cumsum's is important for speed ?!
- occupancy.update(img_array, x, y)
- last_freq = freq
-
- # layout_是单词信息列表,表中每项信息:单词、频率、字体大小、位置、旋转角度、颜色等信息。为后续步骤的绘图工作做好准备。
- self.layout_ = list(zip(frequencies, font_sizes, positions,
- orientations, colors))
- return self
在第6步确定位置时,程序使用循环和随机数来查找合适的放置位置,源码如下。
- # 寻找可能放置的位置,如果寻找一次,没有找到,则尝试改变文字方向或缩小字体大小,继续寻找。
- # 直到找到放置位置或者字体大小超出字号下限
- while True:
- # try to find a position
- font = ImageFont.truetype(self.font_path, font_size)
- # transpose font optionally
- transposed_font = ImageFont.TransposedFont(
- font, orientation=orientation)
- # get size of resulting text
- box_size = draw.textsize(word, font=transposed_font)
- # find possible places using integral image:
- result = occupancy.sample_position(box_size[1] + self.margin,
- box_size[0] + self.margin,
- random_state)
- if result is not None or font_size < self.min_font_size:
- # either we found a place or font-size went too small
- break
- # if we didn't find a place, make font smaller
- # but first try to rotate!
- if not tried_other_orientation and self.prefer_horizontal < 1:
- orientation = (Image.ROTATE_90 if orientation is None else
- Image.ROTATE_90)
- tried_other_orientation = True
- else:
- font_size -= self.font_step
- orientation = None
其中 occupancy.sample_position() 是具体寻找合适位置的方法。当你试图进一步了解其中的奥秘时,却发现你的【Ctrl+左键】已经无法跳转到深层代码了,悲哀的事情还是发生了......o(╥﹏╥)o
在wordcloud.py文件的顶部有这么一行: from .query_integral_image import query_integral_image 而query_integral_image 是一个pyd文件,该文件无法直接查看。有关pyd格式的更多资料,请自行查阅。
再回到 generate_from_frequencies 上来,方法的最后把数据整理到了 self.layout_ 变量里,这里面就是所有词组绘制时所需要的信息了。然后就可以调用to_file()方法,保存图片了。
- def to_file(self, filename):
-
- img = self.to_image()
- img.save(filename, optimize=True)
- return self
核心方法 to_image() 就会把self.layout_里的信息依次取出,绘制每一个词组。
- def to_image(self):
- self._check_generated()
- if self.mask is not None:
- width = self.mask.shape[1]
- height = self.mask.shape[0]
- else:
- height, width = self.height, self.width
-
- img = Image.new(self.mode, (int(width * self.scale),
- int(height * self.scale)),
- self.background_color)
- draw = ImageDraw.Draw(img)
- for (word, count), font_size, position, orientation, color in self.layout_:
- font = ImageFont.truetype(self.font_path,
- int(font_size * self.scale))
- transposed_font = ImageFont.TransposedFont(
- font, orientation=orientation)
- pos = (int(position[1] * self.scale),
- int(position[0] * self.scale))
- draw.text(pos, word, fill=color, font=transposed_font)
-
- return self._draw_contour(img=img)
查找文字合适的放置该怎样实现呢?(注意:文字笔画的空隙里也是可以放置更小一字号的文字)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。