当前位置:   article > 正文

CNN、LeNet、AlexNet基于MNIST数据集进行训练和测试,并可视化对比结果_mnist数据集 训练

mnist数据集 训练

完成内容:

  1. 构建CNN并基于MNIST数据集进行训练和测试
  2. 构建LeNet并基于MNIST数据集进行训练和测试
  3. 构建AlexNet并基于MNIST数据集进行训练和测试
  4. 对比了不同网络在MNIST数据集上训练的效果

准备工作

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
from matplotlib import pyplot as plt
import pandas as pd
from math import pi
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

下载数据,加载data_loader

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'device:{device}')
batch_size = 256

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

# 加载数据(本步建议挂梯子)
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)

# 加载data_loader
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

results = []
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

定义CNN和LeNet通用的训练函数和测试函数

def train(model, train_loader, criterion, optimizer, device):
    model.train()
    running_loss = 0.0
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    return running_loss / len(train_loader)


def test(model, test_loader, criterion, device):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    accuracy = correct / total
    return accuracy

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

构建CNN并基于MNIST数据集进行训练和测试

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)
        )
        self.classifier = nn.Linear(16 * 14 * 14, 10)

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
# 展示网络内部结构
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in CNN().features:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
  • 1
  • 2
  • 3
  • 4
  • 5
网络结构:
Conv2d output shape: 	 torch.Size([1, 16, 28, 28])
ReLU output shape: 	 torch.Size([1, 16, 28, 28])
MaxPool2d output shape: 	 torch.Size([1, 16, 14, 14])
  • 1
  • 2
  • 3
  • 4
# 初始化CNN,优化器,损失函数
model = CNN().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []
# 训练网络
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    train_loss = train(model, train_loader, criterion, optimizer, device)
    test_acc = test(model, test_loader, criterion, device)
    result.append(test_acc)
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}')
results.append(result)
results    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

LeNet-MNIST

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),  # (1, 6, 28, 28)
            nn.AvgPool2d(kernel_size=2, stride=2),  # (1, 6, 14, 14)
            nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),  # (1, 16, 10, 10)
            nn.AvgPool2d(kernel_size=2, stride=2),  # (1, 16, 5, 5)
            nn.Flatten(),  # (1, 400)
            nn.Linear(16 * 5 * 5, 120), nn.ReLU(),  # (1, 120)
            nn.Linear(120, 84), nn.ReLU(),  # (1, 84)
            nn.Linear(84, 10)  # (1, 10)
        )

    def forward(self, x):
        x = self.features(x)
        return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
# 展示LeNet网络内部结构
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in LeNet().features:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
  • 1
  • 2
  • 3
  • 4
  • 5
# 网络结构:
Conv2d output shape: 	 torch.Size([1, 6, 28, 28])
ReLU output shape: 	 torch.Size([1, 6, 28, 28])
AvgPool2d output shape: 	 torch.Size([1, 6, 14, 14])
Conv2d output shape: 	 torch.Size([1, 16, 10, 10])
ReLU output shape: 	 torch.Size([1, 16, 10, 10])
AvgPool2d output shape: 	 torch.Size([1, 16, 5, 5])
Flatten output shape: 	 torch.Size([1, 400])
Linear output shape: 	 torch.Size([1, 120])
ReLU output shape: 	 torch.Size([1, 120])
Linear output shape: 	 torch.Size([1, 84])
ReLU output shape: 	 torch.Size([1, 84])
Linear output shape: 	 torch.Size([1, 10])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
# 初始化CNN,优化器,损失函数
model = LeNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []
# 训练模型
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    train_loss = train(model, train_loader, criterion, optimizer, device)
    test_acc = test(model, test_loader, criterion, device)
    result.append(test_acc)
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}')
results.append(result)
results
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

AlexNet-MNIST

# 定义AlexNet
class AlexNet(nn.Module):
    def __init__(self, num_classes=10):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
# 重新加载数据
transform = transforms.Compose([
    transforms.Resize((227, 227)),
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)

batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
# 初始化AlexNet、优化器、损失函数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
alexnet = AlexNet(num_classes=10).to(device)
optimizer = optim.Adam(alexnet.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
result = []

# 训练
num_epochs = 5
for epoch in tqdm(range(num_epochs), desc="training", unit="epoch"):
    alexnet.train()
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = alexnet(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    #  测试
    alexnet.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = alexnet(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    accuracy = correct / total
    result.append(accuracy)
    print(f"Accuracy on test set: {accuracy * 100:.2f}%")
results.append(result)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

结果分析

# Set data
df = pd.DataFrame(results)
columns = ['epoch1', 'epoch2', 'epoch3', 'epoch4', 'epoch5']
df.columns = columns
df['Network'] = ['CNN','LeNet', 'AlexNet']
print(df)
# ------- PART 1: Create background

# number of variable
categories=list(df)[:-1]
N = len(categories)

# What will be the angle of each axis in the plot? (we divide the plot / number of variable)
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]

# Initialise the spider plot
ax = plt.subplot(111, polar=True)

# If you want the first axis to be on top:
ax.set_theta_offset(pi / 2)
ax.set_theta_direction(-1)

# Draw one axe per variable + add labels
plt.xticks(angles[:-1], categories)

# Draw ylabels
ax.set_rlabel_position(0)
plt.yticks([0.925,0.95,0.975], ["0.925","0.95","0.975"], color="grey", size=7)
plt.ylim(0.9,1)


# ------- PART 2: Add plots

# Plot each individual = each line of the data


# Ind1
values=df.loc[0].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="CNN")
ax.fill(angles, values, 'b', alpha=0.1)

# Ind2
values=df.loc[1].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="LeNet")
ax.fill(angles, values, 'r', alpha=0.1)

# Ind3
values=df.loc[2].drop('Network').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="AlexNet")
ax.fill(angles, values, 'g', alpha=0.1)

# Add legend
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))

# Show the graph
plt.show()


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
   epoch1  epoch2  epoch3  epoch4  epoch5  Network
0  0.9629  0.9764  0.9818  0.9823  0.9826      CNN
1  0.9461  0.9706  0.9781  0.9810  0.9869    LeNet
2  0.9844  0.9865  0.9887  0.9855  0.9900  AlexNet
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

总体而言:
AlexNet效果更好,但Alex网络更复杂,计算开销更大;
CNN网络最简单,计算开销最小,效果也较好;
LeNet效果不如预期,按理来说LeNet网络更复杂,相较于CNN拟合效果应更好,但实际效果有偏差,怀疑是epoch较少,5个epoch不足以收敛

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/546202
推荐阅读
相关标签
  

闽ICP备14008679号