赞
踩
MindOpt是一款高效的优化算法软件包,求解算法实现了线性规划(LP)、混合整数线性规划(MILP)、二次规划(QP),可以支持命令行、c、c++、java和python调用。接下来我们将发布一系列文章,讲述各个语言如何使用 MindOpt 来求解数学规划问题。
本篇文章是系列文章的第二篇,下文会分享小编个人对混合整数线性规划的定义,然后举一个例题,最后将对使用 MindOpt Python 语言的 API 来建模以及求解 混合整数线性规划问题示例 中的问题以及展示求解的结果。
求解器安装包的发布渠道。请大家:
我个人认为混合整数线性规划与线性规划的区别在于,线性规划在求解目标函数最优值的时候,决策变量是连续的,即可以是整数也可以是小数,但混合整数线性规划可能会有一个或者多个变量必须为整数。
桌子上有一组物品,每个物品有自己的价值和重量,但是包的承重是有限的;我们要装什么物品,在包的重量承受范围内,包里总物品的价值最高?这个里面选择那个物品就是个整数,并不能是小数切开,比如一个吹风机不能切开只带一半走。
其中:
混合整数线性规划很多时候会更难求解。在求解的时候,可以用分支定界法、割平面法等,会切分成子问题调用线性规划(LP)求解模块。MindOpt在今年也发布了混合整数线性规划(MILP)的求解能力。接下来我会举个例子如何使用。
# 引入python包 from mindoptpy import * if __name__ == "__main__": MDO_INFINITY = MdoModel.get_infinity() # Step 1.创建模型并更改参数。 model = MdoModel() try: # Step 2. 输入模型。 model.set_int_attr(MDO_INT_ATTR.MIN_SENSE, 1) # 添加变量。 x = [] x.append(model.add_var(0.0, 10.0, 1.0, None, "x0", True)) x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x1", True)) x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x2", True)) x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x3", False)) # 添加约束。 # 注意这里的非零元素是按行顺序输入的。 model.add_cons(1.0, MDO_INFINITY, 1.0 * x[0] + 1.0 * x[1] + 2.0 * x[2] + 3.0 * x[3], "c0") model.add_cons(1.0, 1.0, 1.0 * x[0] - 1.0 * x[2] + 6.0 * x[3], "c1") # Step 3. 解决问题并填充结果。 model.solve_prob() model.display_results() # 调用 mindoptpy.MdoModel.get_status() 来检查求解器的优化状态, # 并通过 mindoptpy.MdoModel.get_real_attr() 和 # mindoptpy.MdoVar.get_real_attr() 来获取目标值和最优解。 status_code, status_msg = model.get_status() if status_msg == "OPTIMAL": print("Optimizer terminated with an OPTIMAL status (code {0}).".format(status_code)) print("Primal objective : {0}".format(round(model.get_real_attr(MDO_REAL_ATTR.PRIMAL_OBJ_VAL), 2))) for curr_x in x: print(" - x[{0}] : {1}".format(curr_x.get_index(), round(curr_x.get_real_attr(MDO_REAL_ATTR.PRIMAL_SOLN), 2))) else: print("Optimizer terminated with a(n) {0} status (code {1}).".format(status_msg, status_code)) except MdoError as e: print("Received Mindopt exception.") print(" - Code : {}".format(e.code)) print(" - Reason : {}".format(e.message)) except Exception as e: print("Received exception.") print(" - Reason : {}".format(e)) finally: # Step 4. 释放模型。 model.free_mdl()
首先,我们必须建立一个空的模型
model = MdoModel()
model.set_int_attr(MDO_INT_ATTR.MIN_SENSE, 1)
# 也可以选择这个模型属性model.set_int_attr("MinSense", 1) 数字1代表最小化,0代表最大化
x = []
x.append(model.add_var(0.0, 10.0, 1.0, None, "x0", True))
x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x1", True))
x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x2", True))
x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x3", False))
model.add_cons(1.0, MDO_INFINITY, 1.0 * x[0] + 1.0 * x[1] + 2.0 * x[2] + 3.0 * x[3], "c0")
model.add_cons(1.0, 1.0, 1.0 * x[0] - 1.0 * x[2] + 6.0 * x[3], "c1")
模型输入后,我们接着用solve_prob()来求解问题。
并用display_results()呈现求解结果。
model.solve_prob()
model.display_results()
如果您觉得阅读数学公式案例很抽象,可以去我们云上建模求解平台的案例广场查看更多的案例哦
云上建模求解平台:https://opt.aliyun.com/
钉钉群号:32451444
邮箱地址:solver.damo@list.alibaba-inc.com
更多更新通知:https://solver.damo.alibaba.com
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。