赞
踩
Qwen1.5-72b 版本有BF16、INT8、INT4三个版本,三个版本性能接近。由于BF16版本需要144GB的显存,让普通用户忘却止步,而INT4版本只需要48GB即可推理,给普通用户本地化部署创造了机会。(建议使用4×24G显存的机器)
但由于Qwen1.5-72B-Chat-GPTQ-Int4其使用了GPTQ量化技术,对环境依赖要求严格,需要较为复杂的环境准备步骤。
在此提供环境准备教程。本教程以 Qwen1.5-7B-Chat-GPTQ-Int4为例,同样适用于其他大小的GPTQ-Int4版本。
在autodl平台中租一个4090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8(严格按照cuda11.8版本)
接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置。
说明:
(原因见Qwen库Quantization部分,由于GPTQ工具需要严格的cuda+torch对应关系,且由于近期的升级可能带来的bug。我们保险起见选择cuda11.8,并且根据qwen库所要求的torch2.1,安装了其对应的torch,并在后面使用GPTQ源码构建以确保cuda的正确运行。)
确保nvcc可以正常工作:
nvcc -V
# 查看输出若为Cuda compilation tools, release 11.8 则跳过平台及cuda部分
如果后续由于Autodl的环境更新,无法选择cuda11.8,则可通过以下方式自行搭建cuda11.8环境。该方法已经通过测试。
# 下载驱动并安装 wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run # 勾选cudatoolkit并安装 sudo sh cuda_11.8.0_520.61.05_linux.run # 添加nvcc环境变量 vim ~/.bashrc # 添加如下两行 export PATH=/usr/local/cuda-11.8/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH # 重新载入 source ~/.bashrc nvcc -V
由于base环境的torch不一定满足要求,创建虚拟环境。
# 创建虚拟环境
conda create -n qwen python==3.10
# 安装指定版本pytorch
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
# 安装Qwen1.5所需依赖
pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy optimum peft transformers streamlit modelscope
从源码安装GPTQ(auto-gptq>=0.5.1),否则极易出现GPTQ无法使用cuda的情况
# 从源码安装量化所需GPTQ库
pip install "git+https://github.com/PanQiWei/AutoGPTQ.git@v0.7.1"
见Qwen库Quantization部分说明:
Note: The pre-compiled
auto-gptq
packages strongly depend on the version oftorch
and its CUDA version. Moreover, due to recent update,
you may also encounter unsupported version errors fromtransformers
,optimum
, orpeft
.
We recommend using the latest versions meeting the following requirements:
- torch==2.1 auto-gptq>=0.5.1 transformers>=4.35.0 optimum>=1.14.0 peft>=0.6.1
- torch>=2.0,<2.1 auto-gptq<0.5.0 transformers<4.35.0 optimum<1.14.0 peft>=0.5.0,<0.6.0
至此,环境部分准备完成。
使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。
在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py 执行下载,下载模型大概需要 2 分钟。
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
from modelscope import GenerationConfig
model_dir = snapshot_download('qwen/Qwen1.5-7B-Chat-GPTQ-Int4', cache_dir='/root/autodl-tmp', revision='master')
说明:下载后需要确认下载的Qwen1.5-7B-Chat-GPTQ-Int4文件名称,可能由于解码问题不正确导致后续bug。
在/root/autodl-tmp
路径下新建 chatBot.py
文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。
# 导入所需的库
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import streamlit as st
# 在侧边栏中创建一个标题和一个链接
with st.sidebar:
st.markdown("## Qwen1.5 LLM")
"[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"
# 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512
max_length = st.slider("max_length", 0, 1024, 512, step=1)
# 创建一个标题和一个副标题
st.title("声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/618897
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。