赞
踩
长短期记忆网络(Long-Short Term Memory,LSTM)论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。时间序列数据是以一定有规律的时间间隔,从而在每个时间段产生一系列相应数据。时间序列的相应问题(这里主要将时序问题预测)是根据前n时刻的数据,从此预测后面时刻的数据。
代码如下(示例):
filepath = 'E:\LSTM\data\LAI.xlsx'
data = pd.read_excel(filepath)
print(data.head())
temp = data['LAI']
temp.index = data['Date Time']
代码如下(示例):
import tensorflow as tf from tensorflow import keras import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') # 调用GPU加速 gpus = tf.config.experimental.list_physical_devices(device_type='GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) filepath = 'E:\LSTM\data\LAI.xlsx' data = pd.read_excel(filepath) print(data.head()) temp = data['LAI'] temp.index = data['Date Time'] temp.plot() # 取前80%个数据作为训练集 train_num = int(len(data) * 0.8) # 80%-90%用于验证 val_num = int(len(data) * 0.9) # 最后10%用于测试 temp_mean = temp[:train_num].mean() # 均值 temp_std = temp[:train_num].std() # 标准差 # 标准化 inputs_feature = (temp - temp_mean) / temp_std def database(dataset, start_index, end_index, history_size, target_size): data = [] labels = [] start_index = start_index + history_size if end_index is None: end_index = len(dataset) - target_size for i in range(start_index, end_index): indices = range(i - history_size, i) data.append(np.reshape(dataset[indices], (history_size, 1))) labels.append(dataset[i + target_size]) return np.array(data), np.array(labels) history_size = 25 target_size = 0 x_train, y_train = database(inputs_feature.values, 0, train_num, history_size, target_size) x_val, y_val = database(inputs_feature.values, train_num, val_num, history_size, target_size) x_test, y_test = database(inputs_feature.values, val_num, None, history_size, target_size) print(y_test) print('x_train.shape:', x_train.shape) # x_train.shape: (109125, 20, 1) print('y_train.shape:', y_train.shape) print('x_test.shape:', x_test.shape) # x_train.shape: (109125, 20, 1) print('y_test.shape:', y_test.shape) train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_ds = train_ds.shuffle(25).batch(10) # 验证集 val_ds = tf.data.Dataset.from_tensor_slices((x_val, y_val)) val_ds = val_ds.batch(10) sample = next(iter(train_ds)) print('x_batch.shape:', sample[0].shape, 'y_batch.shape:', sample[1].shape) print('input_shape:', sample[0].shape[-2:]) # 构造输入层 inputs = keras.Input(shape=sample[0].shape[-2:]) x = keras.layers.LSTM(8)(inputs) x = keras.layers.Activation('relu')(x) outputs = keras.layers.Dense(1)(x) # 构造模型 model = keras.Model(inputs, outputs) # 查看模型结构 model.summary() opt = keras.optimizers.Adam(learning_rate=0.001) # 优化器 model.compile(optimizer=opt, loss='mae') # 平均误差损失 epochs = 25 history = model.fit(train_ds, epochs=epochs, validation_data=val_ds) history_dict = history.history train_loss = history_dict['loss'] # 训练集损失 val_loss = history_dict['val_loss'] print('训练完成') plt.figure() plt.plot(range(epochs), train_loss, label='train_loss') # 训练集损失 plt.plot(range(epochs), val_loss, label='val_loss') # 验证集损失 plt.legend() # 显示标签 plt.xlabel('epochs') plt.ylabel('loss') plt.show() print('损失完成') y_predict = model.predict(x_test) # 对测试集的特征值进行预测 dates = temp[val_num:-25].index # 获取时间索引 print('预测完成') fig = plt.figure(figsize=(10, 5)) axes = fig.add_subplot(111) axes.plot(dates, y_test, 'bo', label='actual') print('绘制完成') axes.plot(dates, y_predict, 'ro', label='predict') axes.set_xticks(dates[::30]) axes.set_xticklabels(dates[::30], rotation=45) plt.legend() plt.grid() plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。