当前位置:   article > 正文

代码随想录算法训练营DAY32|C++贪心算法Part.2|122.买卖股票的最佳时机II、55.跳跃游戏、45.跳跃游戏II_c++股票买卖

c++股票买卖

122.买卖股票的最佳时机II

力扣题目链接

文章讲解:122.买卖股票的最佳时机II

视频讲解:

状态:本题可以用动态规划,但是贪心也是能做出来的

本题中首先要明确两个:

  • 只有一只股票;
  • 当前只有买股票或者卖股票的操作

想要获得利润至少要两天为一个交易单元

思路

本题最难受的就是低点和高点不太好找, 但是,如果我们从贪心的角度来思考一个局部问题。

如果我们根据当前的股票价格数组,把利润分解为每天为单位的维度。这样我们就可以得到每天的利润序列:

在这里插入图片描述

现在我们可以得出我们的

局部最优:收集每天的正利润

result += max(prices[i] - prices[i - 1], 0);
  • 1

全局最优:求得最大利润

CPP代码

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 1; i < prices.size(); i++) {
            result += max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

55.跳跃游戏

力扣题目链接

文章链接:55.跳跃游戏

视频链接:贪心算法,怎么跳跃不重要,关键在覆盖范围 | LeetCode:55.跳跃游戏

状态:感觉贪心算法的题都好有意思,但是这题挺难想,局部整成啥呢?

思路

脑经急转弯:只要每次得到最大的可跳范围就行。根本就不需要我们是跳一步两步还是三步。

那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围)

整体最优解:最后得到整体最大覆盖范围,看是否能到终点

从上文可以看出,我们要比较当前范围下能扩充的最终范围。

CPP代码

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int cover = 0;
        if (nums.size() == 1) return true; // 只有一个元素,就是能达到
        for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
            cover = max(i + nums[i], cover);
            if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
        }
        return false;
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

45.跳跃游戏II

力扣题目链接

文章链接:45.跳跃游戏II

视频链接:贪心算法,最少跳几步还得看覆盖范围 | LeetCode: 45.跳跃游戏 II

状态:

思路

在[55.跳跃游戏](# 55.跳跃游戏)中,重点在于能够跳到终点;

在本题中,重点在于最少多少步跳到终点。

但是一个基本思路还是类似的,就是关于覆盖范围的概念。我们每一步都应该是尽可能得去增加我们的覆盖范围。

所以本题可以这样理解:我们用最少的步数去增加我们的覆盖范围

本题的贪心思路如下:

局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加1

整体最优:一步尽可能多走,从而达到最少步数

下列图中覆盖范围的意义就在于,只要是红色的区域,最多两步一定可以到

方法一

首先要明确的如果数组长度只有1,那么直接返回0;

if (nums.size() == 1) return 0;
  • 1

其次,明确当前覆盖最远范围的下标和下一步覆盖最远范围的下标;

int curDistance = 0, ans = 0, nexDistance = 0;
  • 1

我们开始遍历数组,并且要开始收集下一步能跳多远,并且更新步数。

for (i = 0; i < nums.zie(); i++){
  //nextDistance =  i + nums[i]; 下一步能跳多远,但是我们应该记录下一步里跳得最远的
  nexDistance = max(nexDistance, i + nums[i]);
  if (i == curDistance){//遇到当前覆盖最远距离的下标
    ans++; //走一步
    curDistance = nextDistance//更新当前最远距离下标
    if (nextDistance >= nums.size() - 1) break;
  } 
}
return ans;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

最关键的就是搞清楚什么时候步数+1。

  • 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
  • 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。

个人觉得思路很结点,带式代码还是很绕的。

代码改善

这里也是一种思路的改善,就是我们不再关注当前覆盖最远距离的下标是不是终点。

让移动下标指向nums.size - 2

  • 如果移动下标等于当前覆盖最大距离下标, 需要再走一步(即 ans++),因为最后一步一定是可以到的终点。(题目假设总是可以到达数组的最后一个位置),如图:
  • 如果移动下标不等于当前覆盖最大距离下标,说明当前覆盖最远距离就可以直接达到终点了,不需要再走一步。

CPP代码

//方法一
class Solution {
public:
    int jump(vector<int>& nums) {
        if (nums.size() == 1) return 0;
        int curDistance = 0;    // 当前覆盖最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖最远距离下标
        for (int i = 0; i < nums.size(); i++) {
            nextDistance = max(nums[i] + i, nextDistance);  // 更新下一步覆盖最远距离下标
            if (i == curDistance) {                         // 遇到当前覆盖最远距离下标
                ans++;                                  // 需要走下一步
                curDistance = nextDistance;             // 更新当前覆盖最远距离下标(相当于加油了)
                if (nextDistance >= nums.size() - 1) break;  // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
            }
        }
        return ans;
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
//方法二
class Solution {
public:
    int jump(vector<int>& nums) {
        int curDistance = 0;    // 当前覆盖的最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖的最远距离下标
        for (int i = 0; i < nums.size() - 1; i++) { // 注意这里是小于nums.size() - 1,这是关键所在
            nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标
            if (i == curDistance) {                 // 遇到当前覆盖的最远距离下标
                curDistance = nextDistance;         // 更新当前覆盖的最远距离下标
                ans++;
            }
        }
        return ans;
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/635949
推荐阅读
相关标签
  

闽ICP备14008679号