当前位置:   article > 正文

水声被动定位中的机器学习方法研究进展综述_海洋声学中的声源定位机器学习

海洋声学中的声源定位机器学习

水声被动定位中的机器学习方法研究进展综述

人工智能技术与咨询 

图片

来源:《信号处理》,作者牛海强等

摘 要: 本文对基于机器学习方法的水声被动定位研究进展进行了综述。所涉及的机器学习方法有多层感知机(前馈神经网络)、支持向量机、随机森林及以卷积网络层和全连接层为主要组成单元的深度神经网络。本文通过重点引述近几年发表在国际期刊和会议上的相关前沿研究工作,详细论述了将机器学习方法应用于水声被动定位的关键理论基础、单水听器和阵列前端信号预处理算法设计及几种典型的机器学习模型。此外,还指出了现有算法在推向实际应用中面临的困难及挑战。最后,基于作者的思考,文章展望了未来基于机器学习的水声定位算法的几个潜在的研究方向。

关键词:水声被动定位;机器学习;深度学习;神经网络;监督学习

1 引言

近几年,机器学习方法(尤其是深度学习方法)在语音识别[1]、图像处理[2]、自然语言理解[3]等科学领域取得了突破性进展,促进了自动驾驶、人脸识别、语音个人助理、医学影像分析等领域的技术变革。不仅如此,机器学习方法也在深刻影响着其他自然科学领域(如地球物理学[4-7])的发展方向。从统计学的角度看,机器学习方法是一种最优化方法。利用大量统计数据对具有特定结构、包含未知参数的数学模型进行训练,可生成含有训练数据内在统计特征的拟合器。从这个角度看,机器学习方法是一种可应用于最优化问题求解的普适性的框架。因此,其可被应用于其他多个自然科学领域。水声远程被动定位问题是根据观测到的远距离声源辐射的声压数据,通过合适的信号处理算法,在空域内寻找声源最优或最可能的位置。显然,给定合适的经过预处理之后的训练数据,该问题可用机器学习方法进行求解。例如,将机器学习用于分类问题时,模型的输出为可能类型的概率分布。类似地,寻找最优声源位置也可作为机器学习的分类问题进行求解,此时模型输出为声源距离或深度的概率分布。本文对基于机器学习的水声被动定位算法进行综述,通过对目前最新的研究成果进行引述,重点讨论和给出所涉及到的算法理论基础、单阵元及阵列的前端信号预处理算法、模型选择和训练及性能评价等。

将机器学习方法应用到水声被动定位,可以追溯到上世纪九十年代。1991年,Steinberg[8]等人将神经网络用于对均匀介质中点声源的定位。同年,Ozard[9]等人仿真研究了在匹配场处理中利用神经网络进行距离和深度判别。之后,Caiti[10-11]等人(1994、1996)利用径向基函数神经网络估计海底沉积层的特性。另外,Michalopoulou[12](1995)、Stephan[13](1998)和Benson[14](2000)等人分别将神经网络用于海底分类和地声参数反演。总的来说,以上工作为神经网络在水声学中的应用作了探索性的研究。但是,受限于当时的计算资源及缺乏高效的训练算法,加之当时主流的被动定位算法——匹配场定位[15-19],正处于飞速发展阶段,在之后的很长一段时间,机器学习方法在水声学领域并没有受到足够重视,而基于物理场声学建模的匹配场处理方法则成为水声被动定位的研究热点。然而,尽管匹配场处理方法经过几十年的发展取得了巨大的进步,目前也被广泛应用于相关的工程实践,但是匹配场处理方法在实际应用中仍然面临着诸多困难和挑战,如典型的环境失配问题。海洋是一种时变、空变的复杂声信道,导致实测声场与理论建模声场之间必然存在一定的偏差和失配,这种失配有时会给匹配场定位造成较大影响。为克服和降低海洋环境参数不确定性对匹配场定位的影响,研究人员相继提出了一些将环境参数纳入未知参数集的改进的匹配场处理方法,如环境聚焦匹配场处理[20-24]或贝叶斯匹配场定位[25-26]。但同时这些方法带来的问题是计算量显著增加,增加了实时处理的难度。

由于匹配场处理方法的局限性及近几年机器学习理论和技术的新发展,一些基于机器学习的水声被动定位方法开始重新崭露头角,相关研究和报道也陆续出现。2017年,Lefort[27]等人利用水箱实验数据模拟研究了在起伏海洋环境下非线性回归算法的定位性能,表明机器学习算法在水声目标定位中有一定的优势和潜力。同年,Niu[28-29]等人提出了一类可行的基于机器学习算法的水下声源定位方法,系统性研究了前馈神经网络、支持向量机和随机森林三种机器学习模型的声源定位性能,并首次通过海试实测实验数据验证了机器学习算法的定位性能。2018年,Wang[30]等人将实测数据作为实验数据,利用广义回归神经网络对声源进行定位。同年,Huang[31]等人尝试将仿真声场作为训练数据,利用多层的深度卷积神经网络对声源进行定位。2019年,Liu[32]等人利用集合卷积网络对深海直达声区进行声源测距。Niu[33]等人利用50层残差卷积神经网络和单水听器对不确知环境条件下的声源进行定位。所有这些工作都表明了机器学习方法在水声被动定位中的应用潜力。同时,值得注意的是,相关研究在国际水声学领域也开始显示出影响力,越来越多的学者投入到相关研究中。以美国声学学会年会为例,基于机器学习的水声定位或反演研究在2016年的两次会议上还较为少见。到2018年11月的秋季年会,相关的会议报告[34- 40]已明显增加。由此可见,该研究方向正处于快速发展阶段,并逐步在整个水声学领域产生影响力。

2 定位算法

到目前为止,水声远程被动定位中所涉及的机器学习方法,绝大多数属于有监督学习类算法。即利用有标注的数据对机器学习模型进行训练。若机器学习模型的输出为连续的,则为回归器。若模型输出为多个离散值,则将这种机器学习模型称之为分类器。理论上,利用回归器或分类器对声源距离和深度进行估计都是可行的。定位算法的框图如图1所示。定位算法分为两个阶段:训练阶段和预测阶段。

图1 机器学习定位算法框图

Fig.1 Localization algorithm using machine learning

在图1所示的训练阶段,原始声压数据经过前端预处理(见第2.2节)之后作为机器学习模型的输入。用于训练的标注数据为声源位置或与声源位置相关的量。对于回归器,标注为连续的声源距离或深度[28],对于分类器,标注一般采用位向量[28](即组成元素为0和1)对声源距离或深度进行编码表示。给定对应的标注之后,结合模型输出,就可以利用特定的训练损失函数对机器学习模型进行训练,目的是得到模型中的未知参量。几种典型的机器学习模型及对应的训练损失函数见第2.3节。在训练阶段训练好的机器学习模型可用于预测阶段对未知数据的预测,预测阶段机器学习模型的输入为经过同样预处理之后的测量数据。对于回归器,模型的输出为声源距离或深度;对于分类器,输出为声源距离或深度的概率分布,一般取概率最大值为声源位置的估计值。

2.1 理论基础

虽然在某些应用中机器学习模型被认为是无法解释的“黑盒子”模型,但是将机器学习方法应用到水声被动定位中,是有合理的物理理论基础的。如引言所述,机器学习模型实际上是一个函数拟合器,它将输入按照一定的规则映射为输出。在水声学中,不同位置(距离和深度)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/668527
推荐阅读
相关标签
  

闽ICP备14008679号