赞
踩
目录
(1) reshape(const Dimensions& new_dims)
(2) shuffle(const Shuffle& shuffle)
(3) stride(const Strides& strides)
(4) slice(const StartIndices& offsets, const Sizes& extents)
(5) chip(const Index offset, const Index dim)
(6)reverse(const ReverseDimensions& reverse)
降维运算返回的tensor比原始tensor具有更少的维度,返回的tensor的值是通过对原始tensor的值切片应用一个降维算子来计算的。切片的维度可以手动指定(切片指的是需要获取元素的下标)
所有的降维操作都采用一个类型为<TensorType>::Dimensions的参数,该参数可以设定为int数组。
如下代码所示
-
- void testReduction()
- {
- // Create a tensor of 2 dimensions
- Eigen::Tensor<int, 2> a(2, 3);
- a.setValues({ {1, 2, 3}, {6, 5, 4} });
- //
- Eigen::array<int, 1> dims = { 1 }; //沿着第二个维度降维
- Eigen::array<int, 1> dims2 = { 0 }; //沿着第一个维度降维
- // maximum 返回的是某个维度的最大值
-
- Eigen::Tensor<int, 1> b = a.maximum(dims);
- cout << "a" << endl << a << endl << endl;
- cout << "b" << endl << b << endl << endl;
-
-
- Eigen::Tensor<int, 1> c = a.maximum(dims2);
- cout << "c" << endl << c << endl << endl;
- }
下面沿着两个维度降维
- void testReduction2()
- {
- Eigen::Tensor<float, 3, Eigen::ColMajor> a(2, 3, 4);
- a.setValues({ {{0.0f, 1.0f, 2.0f, 3.0f},
- {7.0f, 6.0f, 5.0f, 4.0f},
- {8.0f, 9.0f, 10.0f, 11.0f}},
- {{12.0f, 13.0f, 14.0f, 15.0f},
- {19.0f, 18.0f, 17.0f, 16.0f},
- {20.0f, 21.0f, 22.0f, 23.0f}} });
- //a有三个维度,我们沿着前两个维度降维,降维的结果是一个一维的Tensor,
-
- Eigen::Tensor<float, 1, Eigen::ColMajor> b =a.maximum(Eigen::array<int, 2>({ 0, 1 }));
- cout << "b" << endl << b << endl << endl;
- }
沿着所有维度降维
作为降维的一个特例,可以不传入任何参数,沿着所有的维度进行降维,如下代码所示
- void testReduction3()
- {
- Eigen::Tensor<float, 3> a(2, 3, 4);
- a.setValues({ {{0.0f, 1.0f, 2.0f, 3.0f},
- {7.0f, 6.0f, 5.0f, 4.0f},
- {8.0f, 9.0f, 10.0f, 11.0f}},
- {{12.0f, 13.0f, 14.0f, 15.0f},
- {19.0f, 18.0f, 17.0f, 16.0f},
- {20.0f, 21.0f, 22.0f, 23.0f}} });
- cout << "a:" << endl << a << endl << endl;
- Eigen::Tensor<float, 0> b = a.sum();
- cout << "b" << endl << b << endl << endl;
- }
下面列出来相关的函数
- <Operation> sum(const Dimensions& new_dims)
-
- <Operation> sum()
-
- <Operation> mean(const Dimensions& new_dims)
-
- <Operation> mean()
-
- <Operation> maximum(const Dimensions& new_dims)
-
- <Operation> maximum()
-
- <Operation> minimum(const Dimensions& new_dims)
-
- <Operation> minimum()
-
- //prod()
-
- <Operation> prod(const Dimensions& new_dims)
-
- <Operation> prod()
-
- <Operation> all(const Dimensions& new_dims)
-
- <Operation> all()
-
- <Operation> any(const Dimensions& new_dims)
-
- <Operation> any()
-
- <Operation> reduce(const Dimensions& new_dims, const Reducer& reducer)
-
- void testReduction4()
- {
- // Create a tensor of 2 dimensions
- Eigen::Tensor<int, 2> a(3, 3);
- a.setValues({ {1, 2, 3}, {6, 5, 4},{8, 9, 10} });
- //
- Eigen::array<int, 1> dims = { 1 }; //沿着第二个维度降维
- Eigen::array<int, 1> dims2 = { 0 }; //沿着第一个维度降维
-
- Eigen::Tensor<int, 1> maximum = a.maximum(dims);
- cout << "a" << endl << a << endl << endl;
-
- cout << "maximum(dims):" << endl << a.maximum(dims) << endl << endl;
- cout << "maximum():" << endl << a.maximum() << endl << endl;
-
- cout << "sum(dims):" << endl << a.sum(dims) << endl << endl;
- cout << "sum():" << endl << a.sum() << endl << endl;
-
- cout << "mean(dims):" << endl << a.mean(dims) << endl << endl;
- cout << "mean():" << endl << a.mean() << endl << endl;
-
- cout << "minimum(dims):" << endl << a.minimum(dims) << endl << endl;
- cout << "minimum():" << endl << a.minimum() << endl << endl;
- //返回相应维度元素的乘积
- cout << "prod(dims):" << endl << a.prod(dims) << endl << endl;
- cout << "prod():" << endl << a.prod() << endl << endl;
- //如果相应维度的元素都是大于0 ,则相应维度的降维结果为1 ,否则为0
- cout << "all(dims):" << endl << a.all(dims) << endl << endl;
- cout << "all():" << endl << a.all() << endl << endl;
- //如果相应维度的元素某个大于0 ,则相应维度的降维结果为1 ,否则为0
- cout << "any(dims):" << endl << a.any(dims) << endl << endl;
- cout << "any():" << endl << a.any() << endl << endl;
-
-
- }
Scan操作返回与原始tensor同维度的tensor,该操作沿着指定的轴执行“包含扫描”,即:它计算降维操作的运行总数(沿着降维轴),如果是求和操作,那么它计算的是沿着降维轴的累加求和
-
- void testScan()
- {
- // Create a tensor of 2 dimensions
- Eigen::Tensor<int, 2> a(2, 3);
- a.setValues({ {1, 2, 3}, {4, 5, 6} });
- // Scan it along the second dimension (1) using summation
- Eigen::Tensor<int, 2> b = a.cumsum(1);
- Eigen::Tensor<int, 2> c = a.cumprod(1);
- // The result is a tensor with the same size as the input
- cout << "a" << endl << a << endl << endl;
- cout << "cumsum" << endl << b << endl << endl;
- cout << "cumpord" << endl << c << endl << endl;
- }
<Operation> convolve(const Kernel& kernel, const Dimensions& dims)
卷积操作跟图像课程里面讲的卷积一样,这里不再详述
-
- void testConvolve()
- {
- Eigen::Tensor<float, 4, Eigen::RowMajor> input(3, 3, 7, 11);
- Eigen::Tensor<float, 2, Eigen::RowMajor> kernel(2, 2);
- Eigen::Tensor<float, 4, Eigen::RowMajor> output(3, 2, 6, 11);
- input.setRandom();
- kernel.setRandom();
-
- Eigen::array<int, 2> dims= { 1, 2 }; // Specify second and third dimension for convolution.
- output = input.convolve(kernel, dims);
- cout << "Kernel:" << endl << kernel << endl;
- cout << "Output:" << endl << output << endl;
- //下面手工计算卷积,对比结果
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < 2; ++j) {
- for (int k = 0; k < 6; ++k) {
- for (int l = 0; l < 11; ++l) {
- const float result = output(i, j, k, l);
- const float expected = input(i, j + 0, k + 0, l) * kernel(0, 0) +
- input(i, j + 1, k + 0, l) * kernel(1, 0) +
- input(i, j + 0, k + 1, l) * kernel(0, 1) +
- input(i, j + 1, k + 1, l) * kernel(1, 1);
- cout << result << "," << expected << endl;
- }
- }
- }
- }
- }
这些运算得到的张量与原来的张量维数不同。它们可以用来访问张量的片,用不同的维度查看它们,或者用附加数据填充张量
(1)<Operation> reshape(const Dimensions& new_dims)
返回输入张量的view,该张量已被重新构造为指定的新维。参数new_dims是一个索引值数组。得到的张量的秩等于元素的个数。
-
- void testReshape()
- {
-
- Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
- a.setValues({ {0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f} });
- //说明: array 的类型需要为Eigen:DenseIndex ,如果是int, 则编译不过
- Eigen::array<Eigen::DenseIndex, 1> one_dim = { 3 * 2 };
- Eigen::Tensor<float, 1, Eigen::ColMajor> b = a.reshape(one_dim);
- array<Eigen::DenseIndex, 3> three_dims = { {3, 2, 1} };
- Eigen::Tensor<float, 3, Eigen::ColMajor> c = a.reshape(three_dims);
- cout << "a" << endl << a << endl;
- cout << "b" << endl << b << endl;
- cout << "c" << endl << c << endl;
- }
<Operation> shuffle(const Shuffle& shuffle)
返回输入张量的副本,该张量的维数已根据指定的排列重新排序。参数是一个索引值数组。它的大小是输入张量的秩。它必须包含0、1、…,秩- 1(顺序根据需要随便设置)。输出张量的第i维等于输入张量的第i维洗牌的大小。
-
- void testShuffle()
- {
-
- Eigen::Tensor<float, 3> input(2, 3, 3);
- input.setRandom();
- Eigen::array<Eigen::DenseIndex, 3> shuffle = { 1, 2, 0 };
- Eigen::Tensor<float, 3> output = input.shuffle(shuffle);
- cout << "input:" << endl << input << endl;
- cout << "output:" << endl << output << endl;
- cout << (output.dimension(0) == 3) <<endl;
- cout << (output.dimension(1) == 3) << endl;
- cout << (output.dimension(2) == 2) << endl;
- }
<Operation> stride(const Strides& strides)
返回一个子张量,从原来张量中按照strides的步长取元素
- void testStrides()
- {
- Eigen::Tensor<int, 2> a(4, 3);
- a.setValues({ {0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100} });
- Eigen::array<Eigen::DenseIndex, 2> strides = { 3, 2 };
- Eigen::Tensor<int, 2> b = a.stride(strides);
- cout << "a" << endl << a << endl;
- cout << "b" << endl << b << endl;
- }
<Operation> slice(const StartIndices& offsets, const Sizes& extents)
返回给定张量的子张量。对于每个维i,切片是由存储在输入张量的偏移量[i]和偏移量[i] +区段[i]之间的系数构成的
- void testSlice()
- {
- Eigen::Tensor<int, 2> a(4, 3);
- a.setValues({ {0, 100, 200}, {300, 400, 500},
- {600, 700, 800}, {900, 1000, 1100} });
- Eigen::array<Eigen::DenseIndex, 2> offsets = { 1, 0 };
- Eigen::array<Eigen::DenseIndex, 2> extents = { 2, 2 };
- Eigen::Tensor<int, 2> slice = a.slice(offsets, extents);
- cout << "a" << endl << a << endl;
- cout << "slice:" << endl << slice << endl;
- }
<Operation> chip(const Index offset, const Index dim)
chip是slice的特殊形式,
-
- void testChip()
- {
- Eigen::Tensor<int, 2> a(4, 3);
- a.setValues({ {0, 100, 200}, {300, 400, 500},
- {600, 700, 800}, {900, 1000, 1100} });
- Eigen::Tensor<int, 1> row_3 = a.chip(2, 0);
- Eigen::Tensor<int, 1> col_2 = a.chip(1, 1);
- cout << "a" << endl << a << endl;
- cout << "row_3" << endl << row_3 << endl;
- cout << "col_2" << endl << col_2 << endl;
- }
<Operation>reverse(const ReverseDimensions& reverse)
返回输入张量的一个视图,该视图在维的一个子集上反转系数的顺序。参数reverse是一个布尔值数组,指示系数的顺序是否应该在每个维上反转(true表示反转,false表示不反转)。这个操作保持了输入张量的维数。
- void testReserve()
- {
- Eigen::Tensor<int, 2> a(4, 3);
- a.setValues({ {0, 100, 200}, {300, 400, 500},
- {600, 700, 800}, {900, 1000, 1100} });
- Eigen::array<bool, 2> reverse = { true, false }; //表示第一维反转,第二维不反转
- Eigen::Tensor<int, 2> b = a.reverse(reverse);
- cout << "a" << endl << a << endl << "b" << endl << b << endl;
- }
相关测试代码见:https://github.com/Mayi-Keiji/EigenTest.git
结束~~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。