当前位置:   article > 正文

ChatGLM2-6B Lora 微调训练医疗问答任务

chatglm2-6b lora

一、ChatGLM2-6B Lora 微调

LoRA 微调技术的思想很简单,在原始 PLM (Pre-trained Language Model) 增加一个旁路,一般是在 transformer 层,做一个降维再升维的操作,模型的输入输出维度不变,来模拟 intrinsic rank,如下图的 AB。训练时冻结 PLM 的参数,只训练 AB ,,输出时将旁路输出与 PLM 的参数叠加,进而影响原始模型的效果。该方式,可以大大降低训练的参数量,而性能可以优于其它参数高效微调方法,甚至和全参数微调(Fine-Tuning)持平甚至超过。

对于 AB 参数的初始化,A 使用随机高斯分布,B 使用 0 矩阵,这样在最初时可以保证旁路为一个 0 矩阵,最开始时使用原始模型的能力。

在这里插入图片描述
对于 lora 微调的实现可以使用 HuggingFace 开源的 PEFT 库,地址如下:

https://github.com/huggingface/peft

下载依赖:

pip install peft -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 1

使用方式也很简单,例如先查看 ChatGLM2-6B 的模型结构:

from transformers import AutoModel

model_name = "chatglm-6b"
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
print(model)
  • 1
  • 2
  • 3
  • 4
  • 5

输出结果:

ChatGLMForConditionalGeneration(
  (transformer): ChatGLMModel(
    (embedding): Embedding(
      (word_embeddings): Embedding(65024, 4096)
    )
    (rotary_pos_emb): RotaryEmbedding()
    (encoder): GLMTransformer(
      (layers): ModuleList(
        (0-27): 28 x GLMBlock(
          (input_layernorm): RMSNorm()
          (self_attention): SelfAttention(
            (query_key_value): Linear(in_features=4096, out_features=4608, bias=True)
            (core_attention): CoreAttention(
              (attention_dropout): Dropout(p=0.0, inplace=False)
            )
            (dense): Linear(in_features=4096, out_features=4096, bias=False)
          )
          (post_attention_layernorm): RMSNorm()
          (mlp): MLP(
            (dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False)
            (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False)
          )
        )
      )
      (final_layernorm): RMSNorm()
    )
    (output_layer): Linear(in_features=4096, out_features=65024, bias=False)
  )
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

可以看出 ChatGLM 主要由 28 层的 GLMBlock 进行提取和理解语义特征,下面借助 PEFT 库将 Lora 旁路层注入到模型中,主要关注下 query_key_value 层的变化:

from transformers import AutoTokenizer, AutoModel, AutoConfig
from peft import LoraConfig, get_peft_model, TaskType

model_name = "chatglm-6b"
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)

config = LoraConfig(
    peft_type="LORA",
    task_type=TaskType.CAUSAL_LM,
    inference_mode=False,
    r=8,
    lora_alpha=16,
    lora_dropout=0.1,
    fan_in_fan_out=False,
    bias='lora_only',
    target_modules=["query_key_value"]
)

model = get_peft_model(model, config)
print(model)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

其中 r 就是 lora 中秩的大小。

输出结果:

PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): ChatGLMForConditionalGeneration(
      (transformer): ChatGLMModel(
        (embedding): Embedding(
          (word_embeddings): Embedding(65024, 4096)
        )
        (rotary_pos_emb): RotaryEmbedding()
        (encoder): GLMTransformer(
          (layers): ModuleList(
            (0-27): 28 x GLMBlock(
              (input_layernorm): RMSNorm()
              (self_attention): SelfAttention(
                (query_key_value): Linear(
                  in_features=4096, out_features=4608, bias=True
                  (lora_dropout): ModuleDict(
                    (default): Dropout(p=0.1, inplace=False)
                  )
                  (lora_A): ModuleDict(
                    (default): Linear(in_features=4096, out_features=8, bias=False)
                  )
                  (lora_B): ModuleDict(
                    (default): Linear(in_features=8, out_features=4608, bias=False)
                  )
                  (lora_embedding_A): ParameterDict()
                  (lora_embedding_B): ParameterDict()
                )
                (core_attention): CoreAttention(
                  (attention_dropout): Dropout(p=0.0, inplace=False)
                )
                (dense): Linear(in_features=4096, out_features=4096, bias=False)
              )
              (post_attention_layernorm): RMSNorm()
              (mlp): MLP(
                (dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False)
                (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False)
              )
            )
          )
          (final_layernorm): RMSNorm()
        )
        (output_layer): Linear(in_features=4096, out_features=65024, bias=False)
      )
    )
  )
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

可以对比下原始的 ChatGLM 模型结构, query_key_value 层中已经被加入下 loraAB 层,下面可以通过 model.print_trainable_parameters() 打印可训练的参数量:

trainable params: 2,078,720 || all params: 6,245,533,696 || trainable%: 0.03328330453698988
  • 1

可以看到可训练的参数量只有 0.03328330453698988

下面依然借助前面文章使用的医疗问答数据集,在 ChatGLM2 lora 微调下的效果。

对该数据集不了解的小伙伴可以参考下面这篇文章:

ChatGLM2-6B P-Tuning v2 微调训练医疗问答任务

二、ChatGLM2-6B Lora 微调

解析数据,构建 Dataset 数据集 qa_dataset.py

# -*- coding: utf-8 -*-
from torch.utils.data import Dataset
import torch
import json
import numpy as np


class QADataset(Dataset):
    def __init__(self, data_path, tokenizer, max_source_length, max_target_length) -> None:
        super().__init__()
        self.tokenizer = tokenizer
        self.max_source_length = max_source_length
        self.max_target_length = max_target_length
        self.max_seq_length = self.max_source_length + self.max_target_length

        self.data = []
        with open(data_path, "r", encoding='utf-8') as f:
            for line in f:
                if not line or line == "":
                    continue
                json_line = json.loads(line)
                content = json_line["content"]
                summary = json_line["summary"]
                self.data.append({
                    "question": content,
                    "answer": summary
                })
        print("data load , size:", len(self.data))
    def preprocess(self, question, answer):
        prompt = self.tokenizer.build_prompt(question, None)

        a_ids = self.tokenizer.encode(text=prompt, add_special_tokens=True, truncation=True,
                                      max_length=self.max_source_length)

        b_ids = self.tokenizer.encode(text=answer, add_special_tokens=False, truncation=True,
                                      max_length=self.max_target_length)

        context_length = len(a_ids)
        input_ids = a_ids + b_ids + [self.tokenizer.eos_token_id]
        labels = [self.tokenizer.pad_token_id] * context_length + b_ids + [self.tokenizer.eos_token_id]

        pad_len = self.max_seq_length - len(input_ids)
        input_ids = input_ids + [self.tokenizer.pad_token_id] * pad_len
        labels = labels + [self.tokenizer.pad_token_id] * pad_len
        labels = [(l if l != self.tokenizer.pad_token_id else -100) for l in labels]
        return input_ids, labels

    def __getitem__(self, index):
        item_data = self.data[index]

        input_ids, labels = self.preprocess(**item_data)

        return {
            "input_ids": torch.LongTensor(np.array(input_ids)),
            "labels": torch.LongTensor(np.array(labels))
        }

    def __len__(self):
        return len(self.data)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60

构造 Lora 结构,微调训练 train_lora.py

# -*- coding: utf-8 -*-
import pandas as pd
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, AutoModel
from qa_dataset import QADataset
from peft import LoraConfig, get_peft_model, TaskType
from tqdm import tqdm
import torch
import os, time, sys


def train(epoch, model, device, loader, optimizer, gradient_accumulation_steps):
    model.train()
    time1 = time.time()
    for index, data in enumerate(tqdm(loader, file=sys.stdout, desc="Train Epoch: " + str(epoch))):
        input_ids = data['input_ids'].to(device, dtype=torch.long)
        labels = data['labels'].to(device, dtype=torch.long)

        outputs = model(
            input_ids=input_ids,
            labels=labels,
        )
        loss = outputs.loss
        # 反向传播,计算当前梯度
        loss.backward()
        # 梯度累积步数
        if (index % gradient_accumulation_steps == 0 and index != 0) or index == len(loader) - 1:
            # 更新网络参数
            optimizer.step()
            # 清空过往梯度
            optimizer.zero_grad()

        # 100轮打印一次 loss
        if index % 100 == 0 or index == len(loader) - 1:
            time2 = time.time()
            tqdm.write(
                f"{index}, epoch: {epoch} -loss: {str(loss)} ; each step's time spent: {(str(float(time2 - time1) / float(index + 0.0001)))}")


def validate(tokenizer, model, device, loader, max_length):
    model.eval()
    predictions = []
    actuals = []
    with torch.no_grad():
        for _, data in enumerate(tqdm(loader, file=sys.stdout, desc="Validation Data")):
            input_ids = data['input_ids'].to(device, dtype=torch.long)
            labels = data['labels'].to(device, dtype=torch.long)
            generated_ids = model.generate(
                input_ids=input_ids,
                max_length=max_length,
                do_sample=False,
                temperature=0
            )
            preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in
                     generated_ids]
            target = [tokenizer.decode(t, skip_special_tokens=True, clean_up_tokenization_spaces=True) for t in labels]
            predictions.extend(preds)
            actuals.extend(target)
    return predictions, actuals


def main():
    model_name = "chatglm-6b"
    train_json_path = "./data/train.json"
    val_json_path = "./data/val.json"
    max_source_length = 128
    max_target_length = 512
    epochs = 5
    batch_size = 1
    lr = 1e-4
    lora_rank = 8
    lora_alpha = 32
    gradient_accumulation_steps = 16
    model_output_dir = "output"
    # 设备
    device = torch.device("cuda:0")

    # 加载分词器和模型
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True)

    # setup peft
    peft_config = LoraConfig(
        task_type=TaskType.CAUSAL_LM,
        inference_mode=False,
        r=lora_rank,
        lora_alpha=lora_alpha,
        lora_dropout=0.1
    )
    model = get_peft_model(model, peft_config)
    model.is_parallelizable = True
    model.model_parallel = True
    model.print_trainable_parameters()
    # 转为半精度
    model = model.half()
    model.float()

    print("Start Load Train Data...")
    train_params = {
        "batch_size": batch_size,
        "shuffle": True,
        "num_workers": 0,
    }
    training_set = QADataset(train_json_path, tokenizer, max_source_length, max_target_length)
    training_loader = DataLoader(training_set, **train_params)
    print("Start Load Validation Data...")
    val_params = {
        "batch_size": batch_size,
        "shuffle": False,
        "num_workers": 0,
    }
    val_set = QADataset(val_json_path, tokenizer, max_source_length, max_target_length)
    val_loader = DataLoader(val_set, **val_params)

    optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
    model = model.to(device)
    print("Start Training...")
    for epoch in range(epochs):
        train(epoch, model, device, training_loader, optimizer, gradient_accumulation_steps)
        print("Save Model To ", model_output_dir)
        model.save_pretrained(model_output_dir)
    # 验证
    print("Start Validation...")
    with torch.no_grad():
        predictions, actuals = validate(tokenizer, model, device, val_loader, max_target_length)
        # 验证结果存储
        final_df = pd.DataFrame({"Generated Text": predictions, "Actual Text": actuals})
        val_data_path = os.path.join(model_output_dir, "predictions.csv")
        final_df.to_csv(val_data_path)
        print("Validation Data To ", val_data_path)


if __name__ == '__main__':
    main()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135

开始训练:

在这里插入图片描述

等待训练结束后,可以在输出目录看到保存的模型,仅只有 lora 层的参数,所以模型比较小:

在这里插入图片描述

此时可以查看下 predictions.csv 中验证集的效果。

三、模型测试

from transformers import AutoTokenizer, AutoModel, AutoConfig
from peft import PeftConfig, PeftModel, LoraConfig, get_peft_model, TaskType
import torch


def load_lora_config(model):
    config = LoraConfig(
        task_type=TaskType.CAUSAL_LM,
        inference_mode=False,
        r=8,
        lora_alpha=32,
        lora_dropout=0.1,
        target_modules=["query_key_value"]
    )
    return get_peft_model(model, config)

device = torch.device("cuda:0")

model_name = "chatglm-6b"
lora_dir = "output"

model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

config = PeftConfig.from_pretrained(lora_dir)
model = PeftModel.from_pretrained(model, lora_dir)

model = model.to(device)
model.eval()

response, history = model.chat(tokenizer, "5月至今上腹靠右隐痛,右背隐痛带酸,便秘,喜睡,时有腹痛,头痛,腰酸症状?", history=[])
print("回答:", response)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

输出:

在这里插入图片描述

回答: 你好,根据你的叙述,考虑是胃炎引来的。建议你平时留意饮食规律,不要吃辛辣刺激性食物,多喝热水,可以口服奥美拉唑肠溶胶囊和阿莫西林胶囊实施救治,如果效果不好,建议去医院做胃镜仔细检查。除了及时救治胃痛外,患者朋友理应始终保持愉快的心态去直面疾病,只有这样才能令得患者及时对症救治,同时要多看重自身饮食护理,多观注自身的症状变动,认为这样一定能将胃痛撵走。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/81481
推荐阅读
相关标签
  

闽ICP备14008679号