赞
踩
import cv2
import numpy as np
img = cv2.imread("Resources/The Legend of Zelda.jpg")
kernel = np.ones((5, 5), np.uint8) # 卷积核
# 颜色空间转换,转换成灰度图(注意是BGR而不是RBG)
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 平滑处理,高斯模糊, 高斯核的宽和高只能是奇数
imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 0)
# 边缘检测, 实际也是采用了高斯模糊去除噪音并设置梯度阈值进行过滤
imgCanny = cv2.Canny(img, 150, 200)
# 膨胀,可以适当增加迭代次数
imgDilated = cv2.dilate(imgCanny, kernel, iterations=1)
# 侵蚀
imgEroded = cv2.erode(imgDilated, kernel, iterations=1)
# 缩小到0.2倍并拼接
imgStack = stackImages(0.2, [[img, imgGray, imgBlur],
[imgCanny, imgDilated, imgEroded]])
cv2.imshow("Image Stack", imgStack)
cv2.waitKey(0)
其中stackImage函数的定义为
def stackImages(scale, imgArray):
'''
图像堆栈,可缩放,按列表排列,不受颜色通道限制
'''
rows = len(imgArray)
cols = len(imgArray[0])
rowsAvailable = isinstance(imgArray[0], list)
width = imgArray[0][0].shape[1]
height = imgArray[0][0].shape[0]
if rowsAvailable:
for x in range(0, rows):
for y in range(0, cols):
if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:
imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
else:
imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),
None, scale, scale)
if len(imgArray[x][y].shape) == 2:
imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)
imageBlank = np.zeros((height, width, 3), np.uint8)
hor = [imageBlank]*rows
hor_con = [imageBlank]*rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
ver = np.vstack(hor)
else:
for x in range(0, rows):
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
else:
imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
if len(imgArray[x].shape) == 2:
imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor = np.hstack(imgArray)
ver = hor
return ver
封装了numpy中的vstack和hstack,方便使用
效果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。