当前位置:   article > 正文

使用LSTM和ResNet的无监督多模态分类_resnet lstm

resnet lstm

前言

这是我第一次在csdn上写文章,做的东西只能算是学校的一些作业,如果有什么问题请大家多多指教。
这次做的是一个结合图像和对应短文本的无监督分类模型,使用的数据集来源于nus-wide,是一个来源于flickr的数据集,图片和文本一一对应,并对数据进行了分类

文本特征提取模型

在文本特征方面,使用变分自编码器和BiLSTM结合来提取文本的特征。将文本先用genism转变为向量,每一条文本经过词嵌入的过程后变为形状为(40,100)的矩阵,将矩阵输入变分自编码器中,进行1000轮的训练,获取编码器的输出,即可获得压缩为(100,)的文本特征。将此时的z_mean作为kmeans的输入进行分类,准确率大概是60%不到,效果不能说是非常差,但总的来说挺不咋地。
下面展示一些 乱七八糟的代码

import matplotlib
import keras.callbacks
from keras import metrics
from keras.optimizers import adadelta_v2,adam_v2
from keras.layers import Conv2D, Conv2DTranspose, Input,Conv1D,Conv1DTranspose,MaxPooling1D,UpSampling1D, Flatten, Dense, Lambda, Reshape,LSTM,RepeatVector,TimeDistributed,Bidirectional,Dropout
# from keras.layers import BatchNormalization
from keras.losses import binary_crossentropy
from keras.activations import tanh, softmax
from keras.models import Model
from keras.datasets import mnist
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
from keras.saving.save import load_model
from matplotlib import style
from sklearn.cluster import KMeans
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# Load MNIST
from sklearn.model_selection import train_test_split
matplotlib.use('TKAgg')


# Normalize and reshape ============
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        #self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        #self.val_acc = {'batch':[], 'epoch':[]}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        #self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        #self.val_acc['batch'].append(logs.get('val_acc'))

    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        #self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        #self.val_acc['epoch'].append(logs.get('val_acc'))

    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        #plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'r', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            #plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'b', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('loss')
        plt.legend(loc="upper right")
        plt.show()
# Norm.

train_x = np.load('')

#print(train_x)
#train_x = np.load('')
train_x = train_x.astype("float32")
train_x=np.random.permutation(train_x)
#train_x=train_x[0:,0:400]
print(train_x.shape)
#train_x=train_x.reshape((1040,1,400))
#print(train_x.shape)
train_y=np.load('')
# Reshape
''
input_shape = (train_x.shape[1],train_x.shape[2])
print(input_shape)



latent_dim = 3


input_txt = Input(shape=input_shape, name='encoder_input')
x=Dropout(rate=0.2)(input_txt)
x=Bidirectional(LSTM(50,activation='relu',recurrent_activation='sigmoid',recurrent_dropout=0,unroll=False,use_bias=False,name='LSTM'))(x)
#x=Bidirectional(LSTM(128,activation=tanh,input_shape=input_shape,name='LSTM'))(x)
#z_test=Dense(3,name="test")(x)
#x=Dense(200,activation='relu',name='Dense1')(x)
#t=Dense(100,activation='relu')(x)
z_mu = Dense(latent_dim, name='latent_mu')(x)  # Mean values of encoded input
z2=Lambda(softmax,output_shape=(latent_dim,),name='z2')(z_mu)
z_sigma = Dense(latent_dim ,name='latent_sigma')(x)  # Std dev. (variance) of encoded input

def sample_z(args):
    z_mu, z_sigma = args
    eps = K.random_normal(shape=(K.shape(z_mu)[0], K.int_shape(z_mu)[1]))
    return z_mu + K.exp(z_sigma / 2) * eps
'''def sample_z(args):#仅做尝试,上面那个才是要用的
    z_mu, z_sigma = args
    #batch_size = tf.shape(z_mu)[0]
    eps = K.random_normal(shape=(K.shape(z_mu)[0], K.int_shape(z_mu)[1]),mean=0,stddev=1)
    return z_mu + z_sigma * eps'''


z = Lambda(sample_z, output_shape=(latent_dim,), name='z')([z_mu, z_sigma])
#t=Dense(latent_dim,name='test',activation=softmax)(z)
#t=Lambda(softmax,output_shape=(latent_dim,))(z)

encoder = Model(input_txt, [ x,z_mu, z_sigma, z,z2], name='encoder')
encoder.summary()

# ================= ###########
# Decoder

decoder_input = Input(shape=(latent_dim,), name='decoder_input')
#decoded=Dense(200)(decoder_input)#仅尝试
decoded = RepeatVector(train_x.shape[1], name='EmbeddingtoTimeSeries')(decoder_input)
decoded = Bidirectional(LSTM(50,name='DecoderLSTM1',activation='relu', return_sequences=True))(decoded) #intermediate dimensions
decoded=Dropout(rate=0.2)(decoded)

decoded=TimeDistributed(Dense(train_x.shape[2]))(decoded)

# Define and summarize decoder model

decoder = Model(decoder_input, decoded, name='decoder')
decoder.summary()

# apply the decoder to the latent sample
z_decoded = decoder(z)


# =========================
# Define custom loss
# VAE is trained using two loss functions reconstruction loss and KL divergence
# Let us add a class to define a custom layer with loss
class CustomLayer(keras.layers.Layer):

    def vae_loss(self, inputs, decoded):
        inputs=K.flatten(inputs)
        decoded=K.flatten(decoded)
        xent_loss = binary_crossentropy(inputs, decoded)
        kl_loss = -5e-2 * K.mean(1 + z_sigma - K.square(z_mu) - K.exp(z_sigma),axis=-1)
        return K.mean(xent_loss+kl_loss)
    


    # add custom loss to the class
    def call(self, inputs):
        x = inputs[0]
        z_decoded = inputs[1]
        loss = self.vae_loss(x, z_decoded)
        self.add_loss(loss, inputs=inputs)
        return x


# apply the custom loss to the input images and the decoded latent distribution sample
y = CustomLayer()([input_txt, z_decoded])
print(type(y))
vae = Model(input_txt, y, name='vae')

# Compile VAE
vae.compile(optimizer='adam', loss=None)#似乎adam效果最好
vae.summary()

# Train autoencoder
#reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, mode='auto')
#earlystopping = keras.callbacks.EarlyStopping(monitor='val_loss', verbose=1, patience=30, mode='auto',restore_best_weights=True)
#vae.fit(train_x,y=None, epochs=1000, batch_size=128,callbacks=[reduce_lr,earlystopping],validation_split=0.2)
history = LossHistory()
vae.fit(train_x,y=None, epochs=500, batch_size=64,callbacks=[history],validation_split=0.2)
history.loss_plot('epoch')
# =================
# Visualize results
# =================
# Visualize inputs mapped to the Latent space
# Remember that we have encoded inputs to latent space dimension = 2.
# Extract z_mu --> first parameter in the result of encoder prediction representing mean

x,mu, _, zz,sof_z = encoder.predict(test_x)#获取编码器的输出,x就是文本特征
#print(mu)
# Plot dim1 and dim2 for mu
if latent_dim==2:
    plt.figure(figsize=(6, 6))  
    plt.scatter(mu[:, 0], mu[:, 1], c=train_y, cmap='brg')
    plt.xlabel('dim 1')
    plt.ylabel('dim 2')
    plt.colorbar()
    plt.show()
else:
    style.use('ggplot')
    fig = plt.figure()
    ax1 = fig.add_subplot(111, projection='3d')
    ax1.scatter(mu[:, 0], mu[:, 1], mu[:, 2], c=train_y, marker='o')
    # defining x, y, z co-ordinates
    ax1.set_xlabel('x-axis')
    ax1.set_ylabel('y-axis')
    ax1.set_zlabel('z-axis')
    plt.show()

est = KMeans(n_clusters=3)
est.fit(mu)
k_label=est.labels_
np.savetxt('D:/vae_txt_k_label.txt',k_label)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204

图像特征提取

图像特征提取就直接用了预训练的resnet50,先用权重为imagenet的resnet50提取出长度2048的图像特征(这里要把resnet最后的dense层去掉),但这长度和文本特征实在是不搭,所以用自编码器给压缩一下,个人感觉用pca效果不如自编码器,所以用了自编码器,也懒得认真对比了,学校作业就随便搞搞了,总之把图像特征搞成100的长度。
下面是 代码

import matplotlib
from matplotlib import style
import keras.callbacks
from keras import metrics
from keras.optimizer_v2 import adam
from keras.optimizers import adadelta_v2,adam_v2
from keras.layers import Conv2D, Conv2DTranspose, Input, Flatten, Dense, Lambda, Reshape, LSTM, RepeatVector, Bidirectional,\
    TimeDistributed, Bidirectional, Dropout, Conv1D, MaxPooling1D, UpSampling1D, Conv1DTranspose
# from keras.layers import BatchNormalization
from keras.losses import binary_crossentropy, sparse_categorical_crossentropy, categorical_crossentropy, mae, mse
from keras.activations import tanh, relu
from keras.models import Model, Sequential
from keras.datasets import mnist
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
from keras.saving.save import load_model
from sklearn.cluster import KMeans
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# Load MNIST
from sklearn.model_selection import train_test_split
matplotlib.use('TKAgg')
feature=np.load("")
feature=feature.astype("float32")
#print(feature)
feature=np.random.permutation(feature)
print(feature.shape)
#print(feature)
#print(feature.dtype)
train_x=feature[0:,0:2048]
print(train_x.shape)
#train_x=train[0]
#train_x=train_x.reshape((1040,1,2048))
train_y=feature[0:,2048:2049]
print(train_y.shape)
#reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_loss',factor=0.1, patience=30, mode='auto')
#earlystopping = keras.callbacks.EarlyStopping(monitor='val_loss', verbose=1, patience=30,mode='auto',restore_best_weights=True)
# Reshape
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        #self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        #self.val_acc = {'batch':[], 'epoch':[]}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        #self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        #self.val_acc['batch'].append(logs.get('val_acc'))

    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        #self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        #self.val_acc['epoch'].append(logs.get('val_acc'))

    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        #plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'r', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            #plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'b', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('loss')
        plt.legend(loc="upper right")
        plt.show()
#input_shape = (train_x.shape[1],train_x.shape[2])
input_shape=(2048,)
#adam1=adam_v2.Adam(learning_rate=0.001,decay=0.001)
model = Sequential()
model.add(Input(shape=input_shape,name="input"))

model.add(Dense(100,activation='relu',name='bidirectional'))
#model.add(Dropout(rate=0.2))
model.add(Dense(3,name='dense1'))

model.add(Dense(100,activation='relu'))

model.add(Dense(2048))
#model.add(Bidirectional(LSTM(50,activation='relu' ,return_sequences=True)))

#model.add(TimeDistributed(Dense(train_x.shape[2])))
#model.compile(optimizer='adam', loss=categorical_crossentropy,metrics=['accuracy'])
model.compile(optimizer='adam', loss=mse)
model.summary()

# fit model

#model.fit(train_x, train_x, epochs=200,callbacks=[reduce_lr,earlystopping], batch_size=64, validation_split=0.2)
history=LossHistory()
model.fit(train_x, train_x, epochs=500, callbacks=[history],batch_size=64)
history.loss_plot('epoch')
encoder=Model(inputs=model.get_layer('bidirectional').input,outputs=model.get_layer('dense1').output)
encoder2=Model(inputs=model.get_layer('bidirectional').input,outputs=model.get_layer('bidirectional').output)

model.save_weights("",encoder2)
mu= encoder.predict(train_x)


style.use('ggplot')
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
ax1.scatter(mu[:, 0], mu[:, 1],mu[:, 2], c = train_y, marker = 'o')
# defining x, y, z co-ordinates
ax1.set_xlabel('x-axis')
ax1.set_ylabel('y-axis')
ax1.set_zlabel('z-axis')
plt.show()
'''plt.figure(figsize=(6, 6))
plt.scatter(mu[:, 0], mu[:, 1], c=train_y, cmap='brg')
plt.xlabel('dim 1')
plt.ylabel('dim 2')
plt.colorbar()
plt.show()'''
feature=np.load("")
feature=feature.astype("float32")
#print(feature)
#feature=np.random.permutation(feature)
#print(feature.shape)
#print(feature)
#print(feature.dtype)
x=feature[0:,0:2048]
ae_pic_feature=encoder2.predict(x)
est = KMeans(n_clusters=3)
est.fit(mu)
k_label=est.labels_
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135

总体分类

先把上面两个模型的输出用concatenate拼接一下,让长度变成200,然后丢到vae里面,再把输出的结果用kmeans聚个类,基本上就搞定了
下面是 vae代码

import keras
import matplotlib
import tensorflow as tf
from keras import metrics
from keras.backend import softmax
from keras.optimizers import adadelta_v2,adam_v2
from keras.layers import Conv2D, Conv2DTranspose, Input, Flatten, Dense, Lambda, Reshape,LSTM,RepeatVector,TimeDistributed,Bidirectional,Dropout
# from keras.layers import BatchNormalization
from keras.losses import binary_crossentropy
from keras.activations import tanh#,softmax
from keras.models import Model
from keras.datasets import mnist
from keras import backend as K
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
from keras import callbacks
import matplotlib.pyplot as plt
from keras.saving.save import load_model
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# Load MNIST
from sklearn.model_selection import train_test_split
matplotlib.use('TKAgg')
#(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Normalize and reshape ============
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        #self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        #self.val_acc = {'batch':[], 'epoch':[]}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        #self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        #self.val_acc['batch'].append(logs.get('val_acc'))

    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        #self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        #self.val_acc['epoch'].append(logs.get('val_acc'))

    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        #plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'r', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            #plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'b', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('acc-loss')
        plt.legend(loc="upper right")
        plt.show()

# Norm.
'''x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train = x_train / 255
x_test = x_test / 255'''
feature=np.load("")#加载之前做好的特征

feature=feature.astype("float32")#使数据类型为float
test_x=feature[0:,0:200]
test_y=feature[0:,200:]
test_x=test_x.reshape((1457,1,200))
print(feature.shape)
feature=np.random.permutation(feature)

#print(feature)
#print(feature.dtype)
train=feature[0:,0:200]


#print(train)
train_x=train.reshape((1457,1,200))

# Reshape
input_shape = (train_x.shape[1],train_x.shape[2])#输入训练的形状为(1,400)
print(input_shape)



latent_dim = 3  # Number of latent dim parameters即为想要的主题数

input_txt = Input(shape=input_shape, name='encoder_input')
x=Dropout(rate=0.3)(input_txt)
x=Bidirectional(LSTM(100,activation=tanh,recurrent_activation='sigmoid',recurrent_dropout=0,unroll=False,use_bias=False,input_shape=input_shape,name='LSTM'))(x)

z_mu = Dense(latent_dim, name='latent_mu')(x)  # Mean values of encoded input
z_sigma = Dense(latent_dim ,name='latent_sigma')(x)  # Std dev. (variance) of encoded input

def sample_z(args):
    z_mu, z_sigma = args
    eps = K.random_normal(shape=(K.shape(z_mu)[0], K.int_shape(z_mu)[1]))
    return z_mu + K.exp(z_sigma / 2) * eps



z = Lambda(sample_z, output_shape=(latent_dim,), name='z')([z_mu, z_sigma])
#z=Lambda(softmax,output_shape=(latent_dim,))(z)

encoder = Model(input_txt, [ z_mu, z_sigma, z,t,z2], name='encoder')
encoder.summary()

# ================= ###########
# Decoder

decoder_input = Input(shape=(latent_dim,), name='decoder_input')
#decoded=Dense(200)(decoder_input)#仅尝试
decoded = RepeatVector(train_x.shape[1], name='EmbeddingtoTimeSeries')(decoder_input)
decoded = Bidirectional(LSTM(100,name='DecoderLSTM1',activation=tanh, return_sequences=True))(decoded) #intermediate dimensions
decoded=Dropout(rate=0.3)(decoded)
decoded=TimeDistributed(Dense(train_x.shape[2]))(decoded)

# Define and summarize decoder model

decoder = Model(decoder_input, decoded, name='decoder')
decoder.summary()

# apply the decoder to the latent sample
z_decoded = decoder(z)


# =========================
# Define custom loss
# VAE is trained using two loss functions reconstruction loss and KL divergence
# Let us add a class to define a custom layer with loss
class CustomLayer(keras.layers.Layer):

    def vae_loss(self, inputs, decoded):
        inputs=K.flatten(inputs)
        decoded=K.flatten(decoded)
        xent_loss = binary_crossentropy(inputs, decoded)
        kl_loss = -5e-2 * K.mean(1 + z_sigma - K.square(z_mu) - K.exp(z_sigma),axis=-1)
        
        return K.mean(xent_loss+kl_loss)
    


    # add custom loss to the class
    def call(self, inputs):
        x = inputs[0]
        z_decoded = inputs[1]
        loss = self.vae_loss(x, z_decoded)
        self.add_loss(loss, inputs=inputs)
        return x


# apply the custom loss to the input images and the decoded latent distribution sample
y = CustomLayer()([input_txt, z_decoded])
print(type(y))
vae = Model(input_txt, y, name='vae')

# Compile VAE
vae.compile(optimizer='adam', loss=None)#似乎adam效果最好
vae.summary()

# Train autoencoder
history = LossHistory()
vae.fit(train_x,y=None, epochs=1000,callbacks=[history], batch_size=64,validation_split=0.2)
history.loss_plot('epoch')
# =================
# Visualize results
# =================
# Visualize inputs mapped to the Latent space
# Remember that we have encoded inputs to latent space dimension = 2.
# Extract z_mu --> first parameter in the result of encoder prediction representing mean

mu, _, zz, t,z_2 = encoder.predict(test_x)#获取编码器的输出
#encoder.save_weights('')
est = KMeans(n_clusters=3)
est.fit(mu)
#print(mu.shape)
#a=est.predict(mu[0:1])
#print(a)
'''joblib.dump(est, 'D:/keyan/source/model/Kmeans11.pkl')

# 载入模型
kmeans = joblib.load('')
labels = kmeans.labels_'''
labels=est.labels_
print(labels)
np.savetxt('',labels)
style.use('ggplot')
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
ax1.scatter(z_2[:, 0],z_2[:, 1],z_2[:, 2], c = test_y, marker = 'o')
# defining x, y, z co-ordinates
ax1.set_xlabel('x-axis')
ax1.set_ylabel('y-axis')
ax1.set_zlabel('z-axis')
plt.show()
style.use('ggplot')
fig = plt.figure()
ax2 = fig.add_subplot(111, projection='3d')
ax2.scatter(z_2[:, 0], z_2[:, 1],z_2[:, 2], c = labels, marker = 'o')
# defining x, y, z co-ordinates
ax2.set_xlabel('x-axis')
ax2.set_ylabel('y-axis')
ax2.set_zlabel('z-axis')
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214

总结

最后和本身数据集的标签对比下,分类的准确率在0.845,效果就那样吧,只是相对这个做个记录。

新增

在VAE的encoder的z后面加个softmax函数,把z拍到一个平面上就可以当主题模型用了,可以看出不同类别主题的占比

本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号