当前位置:   article > 正文

Linux 内核的 list.h_list.h文件

list.h文件

0. Linux 的内核的数据结构,应该属 list.h 中的 list_head 最重要、最常见。

  • list_head是一个双向的,带有伪头部(哨兵)的 双向环形链表
  • 这个双向链表的每个节点的类型可以不一样

应用:

  1. 内核的定时器使用链表的话,包括用户态的定时器,都会首选 list_head
  2. list_head 虽然是内核的数据结构,但是比较特殊,将它复制到用户态,也可以直接用 gcc 编译通过运行。
  3. 之前在看 openwrt 中有一个 uloop 的用户态的库,就是使用 list_head

说在前面:

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
  • 1

这个宏就是为了计算下面的 size,原理:将地址 0 的位置强制标记为结构体指针的类型,那么它的member成员变量所对应的地址就是size的值。
在这里插入图片描述
那么我们经常看到的 contain_of 这个宏就好解释了:

#define container_of(ptr, type, member) ({              \         
const typeof( ((type *)0)->member ) *__mptr = (ptr);    \         
(type *)( (char *)__mptr - offsetof(type,member) );})
  • 1
  • 2
  • 3
  • 中间的那行:ptrmember 的指针,是一个指针赋值,将 ptr 指针赋值给 __mptr
  • 最后面的一行:因为 offsetof(type,member) 计算了 size 的值,而__mptr记录着 member 的地址,它往前移动size的值就是结构体开始的地址,再将它强制转为为结构体的指针类型,就得到了我们想要的结构体。
  • 那要 ptr 就可以,为什么要多一个中间变量__mptr?因为这是一个指针赋值给指针,在 C 编译器,指针赋值给指针,如果两边的指针类型不匹配,需要强制将右值的指针的类型进行手动转换,否则会报错!这个就是一个检验报错的机制。
typeof( ((type *)0)->member )
  • 1
  • 返回 member 的类型。在这里没有多余的意思。

1. 笔记

a. 结构体定义

结构体的成员是两个指针变量

// include/linux/types.h
struct list_head {
	struct list_head *next, *prev;
};
  • 1
  • 2
  • 3
  • 4

b. 初始化

// include/linux/list.h
/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)
{
	list->next = list;
	list->prev = list;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

上面三个都是初始化函数,创建一个结构体实例,这个结构体就是链表的头部。一般这个链表是不保存数据的,只是起一个哨兵的作用。实例中图示如下,创建一个结构体示例,类型为struct list_head,指针 prev 指向自身结构体(struct list_head):
在这里插入图片描述

c. 链表的增

/*
 * 在 prev 和 next 之间插入一个节点 new
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next);
#endif

/**
 * 在链表头部(链表头)后面插入
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}

/**
 * 在链表尾部后面插入
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

d. 链表的删

/*
 * 删除 prev 和 next 之间的节点(但是不释放内存)
 */
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
	next->prev = prev;
	prev->next = next;
}

/**
 * 删除节点 entry ,但是不释放内存
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_del_entry(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
}

/**
 * 删除节点 entry ,但是不释放内存
 * 同时设置 entry 的 prev, next 指针为非法
 */
static inline void list_del(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	entry->next = LIST_POISON1;
	entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

e. 链表的查

前置内容:

// 一个包含 list_head 的结构体定义
struct ListNode
{
    int val;
    // list.h 内定义的核心结构体
    struct list_head mylist;
};

// 它的示例这样写:
struct ListNode first_node;
struct ListNode second_node;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • member:指成员变量,struct list_head 类型的名字——mylist
  • type: 指包含 struct list_head 的结构体类型——struct ListNode
  • ptr: 指已经实例化链表的节点的 strust list_head 的指针
  • head:一般指链表的头节点中的 strust list_head 的指针
  • pos:这个得看函数就是遍历的临时变量,类似于(for(pos = head; pos != NULL; pos = pos.next)),主要是区分类型。
    • list_for_each_entry_safe 这样的函数,它的类型是链表节点的指针
    • 如果是list_for_each_safe它是 strust list_head 的指针

最常用的两个,遍历的是结构体(包含 struct list_head 和数据成员的结构体):

/**
 * list_for_each_entry	-	iterate over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry(pos, head, member)				\
	for (pos = list_first_entry(head, typeof(*pos), member);	\
	     &pos->member != (head);					\
	     pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)			\
	for (pos = list_first_entry(head, typeof(*pos), member),	\
		n = list_next_entry(pos, member);			\
	     &pos->member != (head); 					\
	     pos = n, n = list_next_entry(n, member))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

f. 一些技巧

  • 如果全部使用 list_add:在哨兵节点后插入节点,可以作stack使用(先进后出)
  • 如果全部使用list_add_tail:在哨兵节点前面插入节点,可以做queue使用(先进先出)


2. 一个例子

#include "list.h"
#include <stdio.h>

// 一个 entry 的结构体定义
struct ListNode
{
    int val;
    // list.h 内定义的核心结构体
    struct list_head mylist;
};

int main()
{
	// 初始化一个哨兵头节点
    LIST_HEAD(head_node);

    // 第一个有用节点
    struct ListNode first_node = 
    { 
        .val = 1,
        .mylist = LIST_HEAD_INIT(first_node.mylist)
    };
    list_add(&first_node.mylist, &head_node);
    printf("%d\n", first_node.val);
    
    // 第二个有用节点
    struct ListNode second_node = 
    { 
        .val = 2,
        .mylist = LIST_HEAD_INIT(second_node.mylist)
    };
    list_add(&second_node.mylist, &head_node);
    printf("%d\n", second_node.val);

	// 不能使用 for 循环,不然会造成死循环,还没有时间看为什么,估计是可以解决的
    // for (int i = 0; i < 5; i++)
    {
        struct ListNode node = 
        { 
            .val = 10,
            .mylist = LIST_HEAD_INIT(node.mylist)
        };
        list_add(&node.mylist, &head_node);
    }

	/* 	头文件宏下的  
	 *	@pos: entry 结构体的实例指针,
	 *	@head:一般正常地使用,就是哨兵节点的指针。如果自己使用一些奇淫技巧,那么就自己确定他的指针位置
	 *	@member:entry 结构体内的 struct list_head 的变量名
	*/
    struct ListNode *pos_ptr = NULL;
    list_for_each_entry(pos_ptr, &head_node, mylist)
    {
        printf("%d\n", pos_ptr->val);
    }

    return 0;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59

2. 头文件源码(每个版本不一样)

  • 文件直接从内核里导出来,可以在用户态使用。
  • list.h
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef LIST_H
#define LIST_H

#include <stdbool.h>
#include <stddef.h>

/* Are two types/vars the same type (ignoring qualifiers)? */
#define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))

/**
 * container_of - cast a member of a structure out to the containing structure
 * @ptr:	the pointer to the member.
 * @type:	the type of the container struct this is embedded in.
 * @member:	the name of the member within the struct.
 *
 */
#define container_of(ptr, type, member) ({				\
	void *__mptr = (void *)(ptr);					\
	_Static_assert(__same_type(*(ptr), ((type *)0)->member) ||	\
		      __same_type(*(ptr), void),			\
		      "pointer type mismatch in container_of()");	\
	((type *)(__mptr - offsetof(type, member))); })

#define LIST_POISON1  ((void *) 0x100)
#define LIST_POISON2  ((void *) 0x122)

/*
 * Circular doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

struct list_head {
	struct list_head *next, *prev;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

/**
 * INIT_LIST_HEAD - Initialize a list_head structure
 * @list: list_head structure to be initialized.
 *
 * Initializes the list_head to point to itself.  If it is a list header,
 * the result is an empty list.
 */
static inline void INIT_LIST_HEAD(struct list_head *list)
{
	list->next = list;
	list->prev = list;
}

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}

/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
	next->prev = prev;
	prev->next = next;
}

static inline void __list_del_entry(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
static inline void list_del(struct list_head *entry)
{
	__list_del_entry(entry);
	entry->next = LIST_POISON1;
	entry->prev = LIST_POISON2;
}

/**
 * list_is_head - tests whether @list is the list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_head(const struct list_head *list, const struct list_head *head)
{
	return list == head;
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
	return head->next == head;
}

/**
 * list_entry - get the struct for this entry
 * @ptr:	the &struct list_head pointer.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 */
#define list_entry(ptr, type, member) \
	container_of(ptr, type, member)

/**
 * list_first_entry - get the first element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) \
	list_entry((ptr)->next, type, member)

/**
 * list_next_entry - get the next element in list
 * @pos:	the type * to cursor
 * @member:	the name of the list_head within the struct.
 */
#define list_next_entry(pos, member) \
	list_entry((pos)->member.next, typeof(*(pos)), member)

/**
 * list_entry_is_head - test if the entry points to the head of the list
 * @pos:	the type * to cursor
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_entry_is_head(pos, head, member)				\
	(&pos->member == (head))

/**
 * list_for_each_entry - iterate over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry(pos, head, member)				\
	for (pos = list_first_entry(head, typeof(*pos), member);	\
	     !list_entry_is_head(pos, head, member);			\
	     pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_safe - iterate over list of given type. Safe against removal of list entry
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)			\
	for (pos = list_first_entry(head, typeof(*pos), member),	\
		n = list_next_entry(pos, member);			\
	     !list_entry_is_head(pos, head, member);			\
	     pos = n, n = list_next_entry(n, member))

#endif /* LIST_H */
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/128114
推荐阅读
相关标签
  

闽ICP备14008679号