赞
踩
点击上方“3D视觉工坊”,选择“星标”
干货第一时间送达
【导语】本文为大家介绍了一个caffe部署yolov5 模型的教程,并开源了全部代码。主要是教你如何搭建caffe推理环境,对yolov5模型做onnx格式转换,onnx模型转caffe模型,实测在1070显卡做到了11ms一帧!
如果说目标检测落地最广的是哪个算法,yolo系列肯定有一席之地,本文为大家介绍yolov5s 4.0模型如何转换为caffe模型并推理,据我所知,华为海思NNIE只支持caffe模型的转换,所以yolov5模型要想在海思芯片上部署,转换为caffe模型是有必要的(在我的1070显卡上,yolov5s 4.0 的模型inference做到了11ms一帧!)
ubuntu:18.04
cuda:10.0
cudnn:7.6.5
caffe: 1.0
OpenCV:3.4.2
Anaconda3:5.2.0
相关的安装包我已经放到百度云盘,可以从如下链接下载: https://pan.baidu.com/s/17bjiU4H5O36psGrHlFdM7A 密码: br7h
cuda和cudnn的安装
可以参考我的TensorRT量化部署yolov5模型的文章(https://zhuanlan.zhihu.com/p/348110519)
Anaconda安装
chmod +x Anaconda3-5.2.0-Linux-x86_64.sh(从上面百度云盘链接下载) .- /Anaconda3-5.2.0-Linux-x86_64.sh
按ENTER,然后按q调至结尾
接受协议 yes
安装路径 使用默认路径
执行安装
在使用的用户.bashrc上添加anaconda路径,比如
export PATH=/home/willer/anaconda3/bin:$PATH
caffe安装
git clone https://github.com/Wulingtian/yolov5_caffe.git
cd yolov5_caffe
命令行输入如下内容:
export CPLUS_INCLUDE_PATH=/home/你的用户名/anaconda3/include/python3.6m
make all -j8
make pycaffe -j8
vim ~/.bashrc
export PYTHONPATH=/home/你的用户名/yolov5_caffe/python:$PYTHONPATH
source ~/.bashrc
libstdc++.so.6: version `GLIBCXX_3.4.21' not found
解决方案:https://blog.csdn.net/phdsky/article/details/84104769?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.add_param_isCf&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.add_param_isCf#commentBox
ImportError: No module named google.protobuf.internal
解决方案:https://blog.csdn.net/quantum7/article/details/83507364
wrap_python.hpp:50:23: fatal error: pyconfig.h: No such file or dir
解决方案:https://blog.csdn.net/weixin_37251044/article/details/79158823
pip安装onnx和onnx-simplifier
pip install onnx
pip install onnx-simplifier
拉取yolov5官方代码
git clone https://github.com/ultralytics/yolov5.git
训练自己的模型步骤参考yolov5官方介绍,训练完成后我们得到了一个模型文件
cd yolov5
python models/export.py --weights 训练得到的模型权重路径 --img-size 训练图片输入尺寸
python -m onnxsim onnx模型名称 yolov5s-simple.onnx 得到最终简化后的onnx模型
git clone https://github.com/Wulingtian/yolov5_onnx2caffe.git
cd yolov5_onnx2caffe v- im convertCaffe.py
设置onnx_path(上面转换得到的onnx模型),prototxt_path(caffe的prototxt保存路径),caffemodel_path(caffe的caffemodel保存路径)
python convertCaffe.py 得到转换好的caffe模型
定位到yolov5_caffe目录下
cd tools
vim caffe_yolov5s.cpp
设置如下参数:
INPUT_W(模型输入宽度)
INPUT_H(模型输入高度)
NUM_CLASS(模型有多少个类别,例如我训练的模型是安全帽检测,只有1类,所以设置为1,不需要加背景类)
NMS_THRESH(做非极大值抑制的阈值)
CONF_THRESH(类别置信度)
prototxt_path(caffe模型的prototxt路径)
caffemodel_path(caffe模型的caffemodel路径)
pic_path(预测图片的路径)
定位到yolov5_caffe目录下
make -j8
cd build
./tools/caffe_yolov5s 输出平均推理时间,以及保存预测图片到当前目录下,至此,部署完成!
如果有小伙伴,想把caffe模型部署到海思芯片,建议把yolov5的focus层替换为conv层(stride为2),upsample层替换为deconv层,如下图所示修改:
本文仅做学术分享,如有侵权,请联系删文。
下载1
在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。
下载2
在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。
下载3
在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近3000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、可答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。