当前位置:   article > 正文

基于Caffe格式部署YOLOV5模型

caff yolov

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

【导语】本文为大家介绍了一个caffe部署yolov5 模型的教程,并开源了全部代码。主要是教你如何搭建caffe推理环境,对yolov5模型做onnx格式转换,onnx模型转caffe模型,实测在1070显卡做到了11ms一帧!

部署简介

如果说目标检测落地最广的是哪个算法,yolo系列肯定有一席之地,本文为大家介绍yolov5s 4.0模型如何转换为caffe模型并推理,据我所知,华为海思NNIE只支持caffe模型的转换,所以yolov5模型要想在海思芯片上部署,转换为caffe模型是有必要的(在我的1070显卡上,yolov5s 4.0 的模型inference做到了11ms一帧!)

推理速度截图

环境配置

  • ubuntu:18.04

  • cuda:10.0

  • cudnn:7.6.5

  • caffe: 1.0

  • OpenCV:3.4.2

  • Anaconda3:5.2.0

  • 相关的安装包我已经放到百度云盘,可以从如下链接下载: https://pan.baidu.com/s/17bjiU4H5O36psGrHlFdM7A 密码: br7h

  • cuda和cudnn的安装

  • 可以参考我的TensorRT量化部署yolov5模型的文章(https://zhuanlan.zhihu.com/p/348110519)

  • Anaconda安装

  • chmod +x Anaconda3-5.2.0-Linux-x86_64.sh(从上面百度云盘链接下载) .- /Anaconda3-5.2.0-Linux-x86_64.sh

  • 按ENTER,然后按q调至结尾

  • 接受协议 yes

  • 安装路径 使用默认路径

  • 执行安装

  • 在使用的用户.bashrc上添加anaconda路径,比如

  • export PATH=/home/willer/anaconda3/bin:$PATH

  • caffe安装

  • git clone https://github.com/Wulingtian/yolov5_caffe.git

  • cd yolov5_caffe

  • 命令行输入如下内容:

  • export CPLUS_INCLUDE_PATH=/home/你的用户名/anaconda3/include/python3.6m

  • make all -j8

  • make pycaffe -j8

  • vim ~/.bashrc

  • export PYTHONPATH=/home/你的用户名/yolov5_caffe/python:$PYTHONPATH

  • source ~/.bashrc

编译过程踩过的坑

libstdc++.so.6: version `GLIBCXX_3.4.21' not found

解决方案:https://blog.csdn.net/phdsky/article/details/84104769?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.add_param_isCf&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.add_param_isCf#commentBox

ImportError: No module named google.protobuf.internal

解决方案:https://blog.csdn.net/quantum7/article/details/83507364

wrap_python.hpp:50:23: fatal error: pyconfig.h: No such file or dir

解决方案:https://blog.csdn.net/weixin_37251044/article/details/79158823

yolov5s模型转换onnx模型

  • pip安装onnx和onnx-simplifier

  • pip install onnx

  • pip install onnx-simplifier

  • 拉取yolov5官方代码

  • git clone https://github.com/ultralytics/yolov5.git

  • 训练自己的模型步骤参考yolov5官方介绍,训练完成后我们得到了一个模型文件

  • cd yolov5

  • python models/export.py --weights 训练得到的模型权重路径 --img-size 训练图片输入尺寸

  • python -m onnxsim onnx模型名称 yolov5s-simple.onnx 得到最终简化后的onnx模型

onnx模型转换caffe模型

  • git clone https://github.com/Wulingtian/yolov5_onnx2caffe.git

  • cd yolov5_onnx2caffe v- im convertCaffe.py

  • 设置onnx_path(上面转换得到的onnx模型),prototxt_path(caffe的prototxt保存路径),caffemodel_path(caffe的caffemodel保存路径)

  • python convertCaffe.py 得到转换好的caffe模型

caffe模型推理

  • 定位到yolov5_caffe目录下

  • cd tools

  • vim caffe_yolov5s.cpp

  • 设置如下参数:

  • INPUT_W(模型输入宽度)

  • INPUT_H(模型输入高度)

  • NUM_CLASS(模型有多少个类别,例如我训练的模型是安全帽检测,只有1类,所以设置为1,不需要加背景类)

  • NMS_THRESH(做非极大值抑制的阈值)

  • CONF_THRESH(类别置信度)

  • prototxt_path(caffe模型的prototxt路径)

  • caffemodel_path(caffe模型的caffemodel路径)

  • pic_path(预测图片的路径)

  • 定位到yolov5_caffe目录下

  • make -j8

  • cd build

  • ./tools/caffe_yolov5s 输出平均推理时间,以及保存预测图片到当前目录下,至此,部署完成!

华为海思NNIE部署拙见

如果有小伙伴,想把caffe模型部署到海思芯片,建议把yolov5的focus层替换为conv层(stride为2),upsample层替换为deconv层,如下图所示修改:

修改后的模型配置yaml文件

预测图片展示

预测效果展示

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近3000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/131573
推荐阅读
相关标签
  

闽ICP备14008679号