当前位置:   article > 正文

学习Caffe(四)Euclidean Loss Layer和Softmax Loss Layer解析_caffe loss layer weight

caffe loss layer weight

Euclidean_loss_layer.cpp

Forward

比较简单

template <typename Dtype>
void EuclideanLossLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  int count = bottom[0]->count();
  caffe_sub(
      count,
      bottom[0]->cpu_data(),
      bottom[1]->cpu_data(),
      diff_.mutable_cpu_data());
  if (bottom.size() == 3) {
    caffe_mul(count, bottom[2]->cpu_data(), diff_.cpu_data(), diff_.mutable_cpu_data());
  }
  Dtype dot = caffe_cpu_dot(count, diff_.cpu_data(), diff_.cpu_data());
  Dtype loss = dot / bottom[0]->num() / Dtype(2);
  top[0]->mutable_cpu_data()[0] = loss;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

Backward

template <typename Dtype>
void EuclideanLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  for (int i = 0; i < 2; ++i) {
    if (propagate_down[i]) {
      const Dtype sign = (i == 0) ? 1 : -1;
      const Dtype alpha = sign * top[0]->cpu_diff()[0] / bottom[i]->num();
      caffe_cpu_axpby(
          bottom[i]->count(),              // count
          alpha,                              // alpha
          diff_.cpu_data(),                   // a
          Dtype(0),                           // beta
          bottom[i]->mutable_cpu_diff());  // b
    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

这里比较困惑的是top[0]->cpu_diff()[0]。其实这个是loss_weight,每个loss layer的第一个top的loss weight默认都是1

见官方说明:http://caffe.berkeleyvision.org/tutorial/loss.html
这里写图片描述

Softmax_loss_layer.cpp

softmax:是指把前级神经元输出的值都以指数归一化, 估计 x中的每一种分类结果出现的概率
这里写图片描述
softmaxloss:softmax每个神经元表示一个类,假设输入是m个已标记的样本:{(x(1),y(1)),...,(x(m),y(m))},标签是y,则目标是最大化y(i)对应的这个神经元在输入x(i)的情况下输出的概率值:
这里写图片描述
对第j个神经元,要最大化真实标签为第j类的样本在该神经元上输出的概率。

Caffe的实现

Caffe中softmax的实现是先计算出神经元的最大值,减去最大值,再归一化。为了保持数值稳定性。

template <typename Dtype>
void SoftmaxLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  //获得标准化的下标
  softmax_axis_ =
      bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
  top[0]->ReshapeLike(*bottom[0]);
  //维度等于softmax_axis_这个维度
  vector<int> mult_dims(1, bottom[0]->shape(softmax_axis_));
  //利用矩阵相乘来求和,这个的值都是1
  sum_multiplier_.Reshape(mult_dims);
  Dtype* multiplier_data = sum_multiplier_.mutable_cpu_data();
  caffe_set(sum_multiplier_.count(), Dtype(1), multiplier_data);
  //softmax_axis_指示第几维度做softmax,默认值是1,若是一个分类网络,则此时outer_num_等于batch_size,
  //inner_num_等于1
  outer_num_ = bottom[0]->count(0, softmax_axis_);
  inner_num_ = bottom[0]->count(softmax_axis_ + 1);
  vector<int> scale_dims = bottom[0]->shape();
  //scale_存放神经元输出的最大值。因此其softmax_axis这个维度上的长度是1
  scale_dims[softmax_axis_] = 1;
  scale_.Reshape(scale_dims);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
template <typename Dtype>
void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  Dtype* scale_data = scale_.mutable_cpu_data();
  int channels = bottom[0]->shape(softmax_axis_);
  int dim = bottom[0]->count() / outer_num_;
  caffe_copy(bottom[0]->count(), bottom_data, top_data);
  // We need to subtract the max to avoid numerical issues, compute the exp,
  // and then normalize.
  for (int i = 0; i < outer_num_; ++i) {
    // initialize scale_data to the first plane
    caffe_copy(inner_num_, bottom_data + i * dim, scale_data);
    for (int j = 0; j < channels; j++) {
      for (int k = 0; k < inner_num_; k++) {
        //计算最大值,注意除了指定的softmax_axis_维度,其他维度都是
        //独立地做softmax
        scale_data[k] = std::max(scale_data[k],
            bottom_data[i * dim + j * inner_num_ + k]);
      }
    }
    // subtraction
    caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_,
        1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data);
    // exponentiation
    caffe_exp<Dtype>(dim, top_data, top_data);
    // sum after exp
    caffe_cpu_gemv<Dtype>(CblasTrans, channels, inner_num_, 1.,
        top_data, sum_multiplier_.cpu_data(), 0., scale_data);
    // division
    for (int j = 0; j < channels; j++) {
      caffe_div(inner_num_, top_data, scale_data, top_data);
      top_data += inner_num_;
    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

参考文献
UFLDL
softmax vs softmaxloss
caffe math function

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/133384
推荐阅读
相关标签
  

闽ICP备14008679号