当前位置:   article > 正文

0106广度优先搜索和最短路径-无向图-数据结构和算法(Java)_在某无向图中求距离顶点v的最短路径长度深度和广度优先遍历算法哪个更合适

在某无向图中求距离顶点v的最短路径长度深度和广度优先遍历算法哪个更合适

1 单点最短路径

单点最短路径。 给定一幅图和一个起点s,回答“从s到给定目的顶点v是否存在一条路径?如果有,找出其中最短的那条(所含边数最少)。“等类似问题。

深度优先搜索在这个问题上没有什么作为,因为它遍历整个图的顺序和找出最短路径的目标没有任何关系。相比之下,广度优先搜索正好可以解决这个问题。

分析:

  • 要找的从s到v的最短路径,从s开始,在所有由一条边就可以到达的顶点中寻找v,找到标记结束。
  • 如果没有找到,我们继续在于s距离2条边的顶点中查找v,如此一直进行。
  • 最后也没有找到,那么说明s到给定顶点v不存在路径,此图为非连通图。

结构选择:

  • 广度优先搜索中,我们希望按照与起点的距离顺序遍历所有顶点,所以我们选择队列(先入先出)。

2 广度优先搜索实现

实现代码如下:

package com.gaogzhen.datastructure.graph.undirected;

import edu.princeton.cs.algs4.*;

/**
 * 最短路径算法
 * @author: Administrator
 * @createTime: 2023/03/07 21:04
 */
public class BreadthFirstDirectedPaths {
    private static final int INFINITY = Integer.MAX_VALUE;

    /**
     * 标记顶点是否与起点连通
     */
    private boolean[] marked;

    /**
     * 表示顶点到与该顶点连通的顶点间最短路径
     */
    private int[] edgeTo;

    /**
     * 顶点到起点之间的边数
     */
    private int[] distTo;

    /**
     * 计算从指定顶点到起点最短路径
     * @param G 无向图
     * @param s 起点
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public BreadthFirstDirectedPaths(Graph G, int s) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            distTo[v] = INFINITY;
            edgeTo[v] = -1;
        }
        validateVertex(s);
        bfs(G, s);
    }

    /**
     * 计算多个起点到指定顶点之间的最短路径
     * @param G 无向图
     * @param sources 多个起点集合
     * @throws IllegalArgumentException if {@code sources} is {@code null}
     * @throws IllegalArgumentException unless each vertex {@code v} in
     *         {@code sources} satisfies {@code 0 <= v < V}
     */
    public BreadthFirstDirectedPaths(Graph G, Iterable<Integer> sources) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            distTo[v] = INFINITY;
            edgeTo[v] = -1;
        }
        validateVertices(sources);
        bfs(G, sources);
    }

    /**
     * 广度优先搜索从指定顶点到起点最短路径
     * @param G 无向图
     * @param s 起点
     */
    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        marked[s] = true;
        distTo[s] = 0;
        q.enqueue(s);
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                    marked[w] = true;
                    q.enqueue(w);
                }
            }
        }
    }

    // BFS from multiple sources
    private void bfs(Graph G, Iterable<Integer> sources) {
        Queue<Integer> q = new Queue<Integer>();
        for (int s : sources) {
            marked[s] = true;
            distTo[s] = 0;
            q.enqueue(s);
        }
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                    marked[w] = true;
                    q.enqueue(w);
                }
            }
        }
    }

    /**
     * 起点s与指定顶点v之间是否有路径(连通)
     * @param v the vertex
     * @return {@code true} if there is a directed path, {@code false} otherwise
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public boolean hasPathTo(int v) {
        validateVertex(v);
        return marked[v];
    }

    /**
     * 返回指定顶点v到起点直接的最短路径(边数)}?
     * @param v the vertex
     * @return the number of edges in such a shortest path
     *         (or {@code Integer.MAX_VALUE} if there is no such path)
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int distTo(int v) {
        validateVertex(v);
        return distTo[v];
    }

    /**
     * 返回指定顶点v到起点直接的最短路径,没有返回null
     * @param v the vertex
     * @return the sequence of vertices on a shortest path, as an Iterable
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable<Integer> pathTo(int v) {
        validateVertex(v);

        if (!hasPathTo(v)) return null;
        Stack<Integer> path = new Stack<Integer>();
        int x;
        for (x = v; distTo[x] != 0; x = edgeTo[x])
            path.push(x);
        path.push(x);
        return path;
    }

    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        int V = marked.length;
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    // throw an IllegalArgumentException if vertices is null, has zero vertices,
    // or has a vertex not between 0 and V-1
    private void validateVertices(Iterable<Integer> vertices) {
        if (vertices == null) {
            throw new IllegalArgumentException("argument is null");
        }
        int V = marked.length;
        int count = 0;
        for (Integer v : vertices) {
            count++;
            if (v == null) {
                throw new IllegalArgumentException("vertex is null");
            }
            validateVertex(v);
        }
        if (count == 0) {
            throw new IllegalArgumentException("zero vertices");
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177

队列保存所有已被标记但其邻接表未被检查过的顶点。先将起点加入队列,然后重复一下步骤知道队列为空。

  • 取出队列中的下一个顶点v并标记它。
  • 将与v相邻的所有未被标记过的顶点加入队列。

说明:

  • edgeTo[]数组结果,也是一棵用父链接表示的根结点为s的树
    • 多起点中,则以各自起点为根结点的树组成的森林。
  • distTo[]表示到起点的路径长度,即边数。代码distTo[w] = distTo[v] + 1;当前顶点路径长度为其父顶点路径长度+1,起点为0。
  • 与算法第四版不同的地方只是在初始化edgeTo为-1表示根结点;算法第四版默认都是0。

以之前无向图(6个顶点,8条边)为例单起点搜索索引起点为0(单起点的路径结果:

在这里插入图片描述

多起点(0,2)搜索结果如下图所示:

在这里插入图片描述

多起点搜索很少用到,一般情况下我们讨论最短路径默认为单点最短路径。

3 总结

命题B。对于从s可达的任意顶点v,广度优先搜索都能找到一条从s到v的最短路径(没有其他从s到v的路径所含有的边比这条路径少。

证明:由归纳易得队列总是包含林哥或者多个到起点的距离为k的顶点,之后是零个或者多个到起点为k+1的顶点,k为整数,起始值为0.这意味着顶点是按照它们和s的距离顺序加入或者离开队列。从顶点v加入队列到它离开队列之前,不可能找出到v的更短路径,而在v离开队列之后发现的所有能够到达v的路径都不可能短于v在树中的路径长度。

命题B(续)。广度优先搜索所需的时间在最坏情况下和V+E成正比。

证明:广度优先搜索标记所有与s连通的顶点所需的时间与它们的度数之和成正比。如果图是连通的,这个和就是所有顶点的度数之和,也就是2E。

广度优先搜索也可以解决单点连通问题,它检查所有与起点连通的顶点和边的方法取决于查找的能力。代码如下:

private void bfs(Graph G, int s) {
    Queue<Integer> q = new Queue<Integer>();
    marked[s] = true;
    q.enqueue(s);
    while (!q.isEmpty()) {
        int v = q.dequeue();
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                marked[w] = true;
                q.enqueue(w);
            }
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

后记

如果小伙伴什么问题或者指教,欢迎交流。

❓QQ:806797785

⭐️源代码仓库地址:https://gitee.com/gaogzhen/algorithm

参考链接:

[1][美]Robert Sedgewich,[美]Kevin Wayne著;谢路云译.算法:第4版[M].北京:人民邮电出版社,2012.10.p344-348.

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/152033
推荐阅读