赞
踩
arg max
or argmax
For a real-valued function f f f with domain S S S, arg max f ( x ) x ∈ S \underset{x\in S}{{\arg\max} \, f(x)} x∈Sargmaxf(x) is the set of elements in S S S that achieve the global maximum in S S S,
{ \underset{x\in S}{{\arg\max} \, f(x)} = \{x \in S: \, f(x) = \max_{y \in S} f(y)\}. }
arg max f ( x ) x ∈ S = { x ∈ S : f ( x ) = max y ∈ S f ( y ) } . { \underset{x\in S}{{\arg\max} \, f(x)} = \{x \in S: \, f(x) = \max_{y \in S} f(y)\}. } x∈Sargmaxf(x)={x∈S:f(x)=y∈Smaxf(y)}.
For example, if f ( x ) f(x) f(x) is 1 − ∣ x ∣ 1-|x| 1−∣x∣, then f f f attains its maximum value of 1 1 1 only at the point x = 0 x=0 x=0. Thus
$$
{ \underset {x} { \operatorname {arg\,max} } \, (1-|x|) = \{ 0 \}. }
$$
arg max x ( 1 − ∣ x ∣ ) = { 0 } . { \underset {x} { \operatorname {arg\,max} } \, (1-|x|) = \{ 0 \}. } xargmax(1−∣x∣)={0}.
maxima ['mæksəmə]:n. 最大数,极大值,最大限度,极限,顶点,最高 (maximum 的复数)
maximum [ˈmæksɪməm]:n. 极大,最大限度,最大量 adj. 最高的,最多的,最大极限的
arg min
or argmin
For a real-valued function f f f with domain S S S, arg min f ( x ) x ∈ S \underset{x \in S}{{\arg\min} f(x)} x∈Sargminf(x) is the set of elements in S S S that achieve the global minimum in S S S,
$$
{ \underset{x \in S}{{\arg\min} \, f(x)} = \{x \in S: \, f(x) = \min_{y \in S} f(y)\}. }
$$
arg min f ( x ) x ∈ S = { x ∈ S : f ( x ) = min y ∈ S f ( y ) } . { \underset{x \in S}{{\arg\min} \, f(x)} = \{x \in S: \, f(x) = \min_{y \in S} f(y)\}. } x∈Sargminf(x)={x∈S:f(x)=y∈Sminf(y)}.
The notion of argmin
or arg min
, which stands for argument of the minimum
, is defined analogously. For instance,
{ \underset {x \in S}{\operatorname {arg\,min} \, f(x)} := \{x \in S ~:~ f(s) \geq f(x){\text{ for all }} s \in S\} }
arg min f ( x ) x ∈ S : = { x ∈ S : f ( s ) ≥ f ( x ) for all s ∈ S } { \underset {x \in S}{\operatorname {arg\,min} \, f(x)} := \{x \in S ~:~ f(s) \geq f(x){\text{ for all }} s \in S\} } x∈Sargminf(x):={x∈S : f(s)≥f(x) for all s∈S}
are points
x
x
x for which
f
(
x
)
f(x)
f(x) attains its smallest value. It is the complementary operator of arg max
.
analogously [ə'næləgəsli]:adv. 类似地,近似地
attain [əˈteɪn]:vt. 达到,实现,获得,到达 vi. 达到,获得,到达 n. 成就
$$
\mathcal{G} = \mathop{\text{max}}\limits_{\mathcal{G}} \ \mathcal{U}(\mathcal{G(s)}) \ \text{subject to} \ \text{l}_{r}(\mathcal{G(s)}) = 1, \ \forall s \in S. \tag{1}
$$
G = max G U ( G ( s ) ) subject to l r ( G ( s ) ) = 1 , ∀ s ∈ S . (1) \mathcal{G} = \mathop{\text{max}}\limits_{\mathcal{G}} \ \mathcal{U}(\mathcal{G(s)}) \ \text{subject to} \ \text{l}_{r}(\mathcal{G(s)}) = 1, \ \forall s \in S. \tag{1} G=Gmax U(G(s)) subject to lr(G(s))=1, ∀s∈S.(1)
https://en.wikipedia.org/wiki/Arg_max
$$
\underset{x}{\operatorname{arg\,max}}\, (1 - |x|) = \{ 0 \}.
$$
arg max x ( 1 − ∣ x ∣ ) = { 0 } . \underset{x}{\operatorname{arg\,max}}\, (1 - |x|) = \{ 0 \}. xargmax(1−∣x∣)={0}.
[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
https://planetmath.org/argminandargmax
https://en.wikipedia.org/wiki/Arg_max
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。