当前位置:   article > 正文

LaTeX 书写 argmax and argmin 公式_latex argmax

latex argmax

1. arg max or argmax

For a real-valued function f f f with domain S S S, arg ⁡ max ⁡   f ( x ) x ∈ S \underset{x\in S}{{\arg\max} \, f(x)} xSargmaxf(x) is the set of elements in S S S that achieve the global maximum in S S S,

{ \underset{x\in S}{{\arg\max} \, f(x)} = \{x \in S: \, f(x) = \max_{y \in S} f(y)\}. }
  • 1

arg ⁡ max ⁡   f ( x ) x ∈ S = { x ∈ S :   f ( x ) = max ⁡ y ∈ S f ( y ) } . { \underset{x\in S}{{\arg\max} \, f(x)} = \{x \in S: \, f(x) = \max_{y \in S} f(y)\}. } xSargmaxf(x)={xS:f(x)=ySmaxf(y)}.

For example, if f ( x ) f(x) f(x) is 1 − ∣ x ∣ 1-|x| 1x, then f f f attains its maximum value of 1 1 1 only at the point x = 0 x=0 x=0. Thus

$$
{ \underset {x} { \operatorname {arg\,max} } \, (1-|x|) = \{ 0 \}. } 
$$
  • 1
  • 2
  • 3

arg max ⁡ x   ( 1 − ∣ x ∣ ) = { 0 } . { \underset {x} { \operatorname {arg\,max} } \, (1-|x|) = \{ 0 \}. } xargmax(1x)={0}.

maxima ['mæksəmə]:n. 最大数,极大值,最大限度,极限,顶点,最高 (maximum 的复数)
maximum [ˈmæksɪməm]:n. 极大,最大限度,最大量 adj. 最高的,最多的,最大极限的
  • 1
  • 2

2. arg min or argmin

For a real-valued function f f f with domain S S S, arg ⁡ min ⁡ f ( x ) x ∈ S \underset{x \in S}{{\arg\min} f(x)} xSargminf(x) is the set of elements in S S S that achieve the global minimum in S S S,

$$
{ \underset{x \in S}{{\arg\min} \, f(x)} = \{x \in S: \, f(x) = \min_{y \in S} f(y)\}. }
$$
  • 1
  • 2
  • 3

arg ⁡ min ⁡   f ( x ) x ∈ S = { x ∈ S :   f ( x ) = min ⁡ y ∈ S f ( y ) } . { \underset{x \in S}{{\arg\min} \, f(x)} = \{x \in S: \, f(x) = \min_{y \in S} f(y)\}. } xSargminf(x)={xS:f(x)=ySminf(y)}.

The notion of argmin or arg min, which stands for argument of the minimum, is defined analogously. For instance,

{ \underset {x \in S}{\operatorname {arg\,min} \, f(x)} := \{x \in S ~:~ f(s) \geq f(x){\text{ for all }} s \in S\} }
  • 1

arg min ⁡   f ( x ) x ∈ S : = { x ∈ S   :   f ( s ) ≥ f ( x )  for all  s ∈ S } { \underset {x \in S}{\operatorname {arg\,min} \, f(x)} := \{x \in S ~:~ f(s) \geq f(x){\text{ for all }} s \in S\} } xSargminf(x):={xS : f(s)f(x) for all sS}

are points x x x for which f ( x ) f(x) f(x) attains its smallest value. It is the complementary operator of arg max.

analogously [ə'næləgəsli]:adv. 类似地,近似地
attain [əˈteɪn]:vt. 达到,实现,获得,到达 vi. 达到,获得,到达 n. 成就
  • 1
  • 2

3. Example

$$
\mathcal{G} = \mathop{\text{max}}\limits_{\mathcal{G}} \ \mathcal{U}(\mathcal{G(s)}) \ \text{subject to} \ \text{l}_{r}(\mathcal{G(s)}) = 1, \ \forall s \in S. \tag{1}
$$
  • 1
  • 2
  • 3

G = max G   U ( G ( s ) )  subject to  l r ( G ( s ) ) = 1 ,   ∀ s ∈ S . (1) \mathcal{G} = \mathop{\text{max}}\limits_{\mathcal{G}} \ \mathcal{U}(\mathcal{G(s)}) \ \text{subject to} \ \text{l}_{r}(\mathcal{G(s)}) = 1, \ \forall s \in S. \tag{1} G=Gmax U(G(s)) subject to lr(G(s))=1, sS.(1)

4. Wikipedia 中复制 LaTeX 公式

https://en.wikipedia.org/wiki/Arg_max

  1. [ edit ]

在这里插入图片描述

  1. You can view and copy the source of this page:

在这里插入图片描述

$$
\underset{x}{\operatorname{arg\,max}}\, (1 - |x|) = \{ 0 \}.
$$
  • 1
  • 2
  • 3

arg max ⁡ x   ( 1 − ∣ x ∣ ) = { 0 } . \underset{x}{\operatorname{arg\,max}}\, (1 - |x|) = \{ 0 \}. xargmax(1x)={0}.

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

https://planetmath.org/argminandargmax
https://en.wikipedia.org/wiki/Arg_max

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号