赞
踩
原文链接:https://blog.csdn.net/whut_ldz/article/details/78845947
-
import torchvision.models
as models
-
-
#resnet
-
model = models.ResNet(pretrained=
True)
-
model = models.resnet18(pretrained=
True)
-
model = models.resnet34(pretrained=
True)
-
model = models.resnet50(pretrained=
True)
-
-
#vgg
-
model = models.VGG(pretrained=
True)
-
model = models.vgg11(pretrained=
True)
-
model = models.vgg16(pretrained=
True)
-
model = models.vgg16_bn(pretrained=
True)
-
# coding=UTF-8
-
import torchvision.models
as models
-
-
#调用模型
-
model = models.resnet50(pretrained=
True)
-
#提取fc层中固定的参数
-
fc_features = model.fc.in_features
-
#修改类别为9
-
model.fc = nn.Linear(fc_features,
9)
-
# coding=UTF-8
-
import torchvision.models
as models
-
import torch
-
import torch.nn
as nn
-
import math
-
import torch.utils.model_zoo
as model_zoo
-
-
class CNN(nn.Module):
-
-
def __init__(self, block, layers, num_classes=9):
-
self.inplanes =
64
-
super(ResNet, self).__init__()
-
self.conv1 = nn.Conv2d(
3,
64, kernel_size=
7, stride=
2, padding=
3,
-
bias=
False)
-
self.bn1 = nn.BatchNorm2d(
64)
-
self.relu = nn.ReLU(inplace=
True)
-
self.maxpool = nn.MaxPool2d(kernel_size=
3, stride=
2, padding=
1)
-
self.layer1 = self._make_layer(block,
64, layers[
0])
-
self.layer2 = self._make_layer(block,
128, layers[
1], stride=
2)
-
self.layer3 = self._make_layer(block,
256, layers[
2], stride=
2)
-
self.layer4 = self._make_layer(block,
512, layers[
3], stride=
2)
-
self.avgpool = nn.AvgPool2d(
7, stride=
1)
-
#新增一个反卷积层
-
self.convtranspose1 = nn.ConvTranspose2d(
2048,
2048, kernel_size=
3, stride=
1, padding=
1, output_padding=
0, groups=
1, bias=
False, dilation=
1)
-
#新增一个最大池化层
-
self.maxpool2 = nn.MaxPool2d(kernel_size=
3, stride=
1, padding=
1)
-
#去掉原来的fc层,新增一个fclass层
-
self.fclass = nn.Linear(
2048, num_classes)
-
-
for m
in self.modules():
-
if isinstance(m, nn.Conv2d):
-
n = m.kernel_size[
0] * m.kernel_size[
1] * m.out_channels
-
m.weight.data.normal_(
0, math.sqrt(
2. / n))
-
elif isinstance(m, nn.BatchNorm2d):
-
m.weight.data.fill_(
1)
-
m.bias.data.zero_()
-
-
def _make_layer(self, block, planes, blocks, stride=1):
-
downsample =
None
-
if stride !=
1
or self.inplanes != planes * block.expansion:
-
downsample = nn.Sequential(
-
nn.Conv2d(self.inplanes, planes * block.expansion,
-
kernel_size=
1, stride=stride, bias=
False),
-
nn.BatchNorm2d(planes * block.expansion),
-
)
-
-
layers = []
-
layers.append(block(self.inplanes, planes, stride, downsample))
-
self.inplanes = planes * block.expansion
-
for i
in range(
1, blocks):
-
layers.append(block(self.inplanes, planes))
-
-
return nn.Sequential(*layers)
-
-
def forward(self, x):
-
x = self.conv1(x)
-
x = self.bn1(x)
-
x = self.relu(x)
-
x = self.maxpool(x)
-
-
x = self.layer1(x)
-
x = self.layer2(x)
-
x = self.layer3(x)
-
x = self.layer4(x)
-
-
x = self.avgpool(x)
-
#新加层的forward
-
x = x.view(x.size(
0),
-1)
-
x = self.convtranspose1(x)
-
x = self.maxpool2(x)
-
x = x.view(x.size(
0),
-1)
-
x = self.fclass(x)
-
-
return x
-
-
#加载model
-
resnet50 = models.resnet50(pretrained=
True)
-
cnn = CNN(Bottleneck, [
3,
4,
6,
3])
-
#读取参数
-
pretrained_dict = resnet50.state_dict()
-
model_dict = cnn.state_dict()
-
# 将pretrained_dict里不属于model_dict的键剔除掉
-
pretrained_dict = {k: v
for k, v
in pretrained_dict.items()
if k
in model_dict}
-
# 更新现有的model_dict
-
model_dict.update(pretrained_dict)
-
# 加载我们真正需要的state_dict
-
cnn.load_state_dict(model_dict)
-
# print(resnet50)
-
print(cnn)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。