赞
踩
红黑树是一种自平衡二叉查找树,典型的用途是实现关联数组。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(logn)时间内做查找,插入和删除,这里的n是树中元素的数目。红黑树是 2-3-4树的一种等同。换句话说,对于每个 2-3-4 树,都存在至少一个数据元素是同样次序的红黑树。详细的红黑树介绍参考我转载的一篇博文http://blog.csdn.net/pngynghay/article/details/8185351。本博文仅仅实现了rbtree以及如何使用rbtree。
本博文红黑树的实现取自Linux内核对红黑树的实现,只是,我去掉了内核实现中对内核的依赖,使得我们可以在用户态应用程序中依然可以使用。
rbtree.h
- #ifndef RBTREE_H_
- #define RBTREE_H_
-
- #include <stdlib.h>
- #include <stddef.h>
- #include <stdio.h>
- #include <string.h>
-
- /*通过父结构体type中的成员member的已知地址ptr,来寻找当前ptr地址所属的父结构体type的地址*/
- #define container_of(ptr, type, member) ({ \
- const typeof( ((type *)0)->member ) *__mptr = (ptr); \
- (type *)( (char *)__mptr - offsetof(type,member) );})
-
- struct rb_node {
- unsigned long rb_parent_color;
- #define RB_RED 0
- #define RB_BLACK 1
- struct rb_node *rb_right;
- struct rb_node *rb_left;
- }__attribute__((aligned(sizeof(long))));
- /* The alignment might seem pointless, but allegedly CRIS needs it */
-
- struct rb_root {
- struct rb_node *rb_node;
- };
-
- #define rb_parent(r) ((struct rb_node *)((r)->rb_parent_color & ~3))
- #define rb_color(r) ((r)->rb_parent_color & 1)
- #define rb_is_red(r) (!rb_color(r))
- #define rb_is_black(r) rb_color(r)
- #define rb_set_red(r) do { (r)->rb_parent_color &= ~1; } while (0)
- #define rb_set_black(r) do { (r)->rb_parent_color |= 1; } while (0)
-
- static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) {
- rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long) p;
- }
- static inline void rb_set_color(struct rb_node *rb, int color) {
- rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;
- }
-
- #define RB_ROOT (struct rb_root) { NULL, }
- #define rb_entry(ptr, type, member) container_of(ptr, type, member)
-
- #define RB_EMPTY_ROOT(root) ((root)->rb_node == NULL)
- #define RB_EMPTY_NODE(node) (rb_parent(node) == node)
- #define RB_CLEAR_NODE(node) (rb_set_parent(node, node))
-
- extern void rb_insert_color(struct rb_node *, struct rb_root *);
- extern void rb_erase(struct rb_node *, struct rb_root *);
-
- /* Find logical next and previous nodes in a tree */
- extern struct rb_node *rb_next(const struct rb_node *);
- extern struct rb_node *rb_prev(const struct rb_node *);
- extern struct rb_node *rb_first(const struct rb_root *);
- extern struct rb_node *rb_last(const struct rb_root *);
-
- /* Fast replacement of a single node without remove/rebalance/add/rebalance */
- extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
- struct rb_root *root);
-
- static inline void rb_link_node(struct rb_node * node, struct rb_node * parent,
- struct rb_node ** rb_link) {
- node->rb_parent_color = (unsigned long) parent;
- node->rb_left = node->rb_right = NULL;
-
- *rb_link = node;
- }
-
- #endif /* RBTREE_H_ */
rbtree.c
- static void __rb_rotate_left(struct rb_node *node, struct rb_root *root) {
- struct rb_node *right = node->rb_right;
- struct rb_node *parent = rb_parent(node);
-
- if ((node->rb_right = right->rb_left))
- rb_set_parent(right->rb_left, node);
- right->rb_left = node;
-
- rb_set_parent(right, parent);
-
- if (parent) {
- if (node == parent->rb_left)
- parent->rb_left = right;
- else
- parent->rb_right = right;
- } else
- root->rb_node = right;
- rb_set_parent(node, right);
- }
-
- static void __rb_rotate_right(struct rb_node *node, struct rb_root *root) {
- struct rb_node *left = node->rb_left;
- struct rb_node *parent = rb_parent(node);
-
- if ((node->rb_left = left->rb_right))
- rb_set_parent(left->rb_right, node);
- left->rb_right = node;
-
- rb_set_parent(left, parent);
-
- if (parent) {
- if (node == parent->rb_right)
- parent->rb_right = left;
- else
- parent->rb_left = left;
- } else
- root->rb_node = left;
- rb_set_parent(node, left);
- }
-
- void rb_insert_color(struct rb_node *node, struct rb_root *root) {
- struct rb_node *parent, *gparent;
-
- while ((parent = rb_parent(node)) && rb_is_red(parent)) {
- gparent = rb_parent(parent);
-
- if (parent == gparent->rb_left) {
- {
- register struct rb_node *uncle = gparent->rb_right;
- if (uncle && rb_is_red(uncle))
- {
- rb_set_black(uncle);
- rb_set_black(parent);
- rb_set_red(gparent);
- node = gparent;
- continue;
- }
- }
-
- if (parent->rb_right == node) {
- register struct rb_node *tmp;
- __rb_rotate_left(parent, root);
- tmp = parent;
- parent = node;
- node = tmp;
- }
-
- rb_set_black(parent);
- rb_set_red(gparent);
- __rb_rotate_right(gparent, root);
- } else {
- {
- register struct rb_node *uncle = gparent->rb_left;
- if (uncle && rb_is_red(uncle))
- {
- rb_set_black(uncle);
- rb_set_black(parent);
- rb_set_red(gparent);
- node = gparent;
- continue;
- }
- }
-
- if (parent->rb_left == node) {
- register struct rb_node *tmp;
- __rb_rotate_right(parent, root);
- tmp = parent;
- parent = node;
- node = tmp;
- }
-
- rb_set_black(parent);
- rb_set_red(gparent);
- __rb_rotate_left(gparent, root);
- }
- }
-
- rb_set_black(root->rb_node);
- }
-
- static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
- struct rb_root *root) {
- struct rb_node *other;
-
- while ((!node || rb_is_black(node)) && node != root->rb_node) {
- if (parent->rb_left == node) {
- other = parent->rb_right;
- if (rb_is_red(other)) {
- rb_set_black(other);
- rb_set_red(parent);
- __rb_rotate_left(parent, root);
- other = parent->rb_right;
- }
- if ((!other->rb_left || rb_is_black(other->rb_left))
- && (!other->rb_right || rb_is_black(other->rb_right))) {
- rb_set_red(other);
- node = parent;
- parent = rb_parent(node);
- } else {
- if (!other->rb_right || rb_is_black(other->rb_right))
- {
- rb_set_black(other->rb_left);
- rb_set_red(other);
- __rb_rotate_right(other, root);
- other = parent->rb_right;
- }
- rb_set_color(other, rb_color(parent));
- rb_set_black(parent);
- rb_set_black(other->rb_right);
- __rb_rotate_left(parent, root);
- node = root->rb_node;
- break;
- }
- } else {
- other = parent->rb_left;
- if (rb_is_red(other)) {
- rb_set_black(other);
- rb_set_red(parent);
- __rb_rotate_right(parent, root);
- other = parent->rb_left;
- }
- if ((!other->rb_left || rb_is_black(other->rb_left))
- && (!other->rb_right || rb_is_black(other->rb_right))) {
- rb_set_red(other);
- node = parent;
- parent = rb_parent(node);
- } else {
- if (!other->rb_left || rb_is_black(other->rb_left))
- {
- rb_set_black(other->rb_right);
- rb_set_red(other);
- __rb_rotate_left(other, root);
- other = parent->rb_left;
- }
- rb_set_color(other, rb_color(parent));
- rb_set_black(parent);
- rb_set_black(other->rb_left);
- __rb_rotate_right(parent, root);
- node = root->rb_node;
- break;
- }
- }
- }
- if (node)
- rb_set_black(node);
- }
-
- void rb_erase(struct rb_node *node, struct rb_root *root) {
- struct rb_node *child, *parent;
- int color;
-
- if (!node->rb_left)
- child = node->rb_right;
- else if (!node->rb_right)
- child = node->rb_left;
- else {
- struct rb_node *old = node, *left;
-
- node = node->rb_right;
- while ((left = node->rb_left) != NULL)
- node = left;
-
- if (rb_parent(old)) {
- if (rb_parent(old)->rb_left == old)
- rb_parent(old)->rb_left = node;
- else
- rb_parent(old)->rb_right = node;
- } else
- root->rb_node = node;
-
- child = node->rb_right;
- parent = rb_parent(node);
- color = rb_color(node);
-
- if (parent == old) {
- parent = node;
- } else {
- if (child)
- rb_set_parent(child, parent);
- parent->rb_left = child;
-
- node->rb_right = old->rb_right;
- rb_set_parent(old->rb_right, node);
- }
-
- node->rb_parent_color = old->rb_parent_color;
- node->rb_left = old->rb_left;
- rb_set_parent(old->rb_left, node);
-
- goto color;
- }
-
- parent = rb_parent(node);
- color = rb_color(node);
-
- if (child)
- rb_set_parent(child, parent);
- if (parent) {
- if (parent->rb_left == node)
- parent->rb_left = child;
- else
- parent->rb_right = child;
- } else
- root->rb_node = child;
-
- color: if (color == RB_BLACK
- )
- __rb_erase_color(child, parent, root);
- }
- /*
- * This function returns the first node (in sort order) of the tree.
- */
- struct rb_node *rb_first(const struct rb_root *root) {
- struct rb_node *n;
-
- n = root->rb_node;
- if (!n)
- return NULL;
- while (n->rb_left)
- n = n->rb_left;
- return n;
- }
-
- struct rb_node *rb_last(const struct rb_root *root) {
- struct rb_node *n;
-
- n = root->rb_node;
- if (!n)
- return NULL;
- while (n->rb_right)
- n = n->rb_right;
- return n;
- }
-
- struct rb_node *rb_next(const struct rb_node *node) {
- struct rb_node *parent;
-
- if (rb_parent(node) == node)
- return NULL;
-
- /* If we have a right-hand child, go down and then left as far
- as we can. */
- if (node->rb_right) {
- node = node->rb_right;
- while (node->rb_left)
- node = node->rb_left;
- return (struct rb_node *) node;
- }
-
- /* No right-hand children. Everything down and left is
- smaller than us, so any 'next' node must be in the general
- direction of our parent. Go up the tree; any time the
- ancestor is a right-hand child of its parent, keep going
- up. First time it's a left-hand child of its parent, said
- parent is our 'next' node. */
- while ((parent = rb_parent(node)) && node == parent->rb_right)
- node = parent;
-
- return parent;
- }
-
- struct rb_node *rb_prev(const struct rb_node *node) {
- struct rb_node *parent;
-
- if (rb_parent(node) == node)
- return NULL;
-
- /* If we have a left-hand child, go down and then right as far
- as we can. */
- if (node->rb_left) {
- node = node->rb_left;
- while (node->rb_right)
- node = node->rb_right;
- return (struct rb_node *) node;
- }
-
- /* No left-hand children. Go up till we find an ancestor which
- is a right-hand child of its parent */
- while ((parent = rb_parent(node)) && node == parent->rb_left)
- node = parent;
-
- return parent;
- }
-
- void rb_replace_node(struct rb_node *victim, struct rb_node *new,
- struct rb_root *root) {
- struct rb_node *parent = rb_parent(victim);
-
- /* Set the surrounding nodes to point to the replacement */
- if (parent) {
- if (victim == parent->rb_left)
- parent->rb_left = new;
- else
- parent->rb_right = new;
- } else {
- root->rb_node = new;
- }
- if (victim->rb_left)
- rb_set_parent(victim->rb_left, new);
- if (victim->rb_right)
- rb_set_parent(victim->rb_right, new);
-
- /* Copy the pointers/colour from the victim to the replacement */
- *new = *victim;
- }
若要使用上面的rbtree,需要根据需要实现自己的rbtree插入和查询函数。本博文实现如下:
- //关联到红黑树的数据结构
- struct int_rbtree {
- struct rb_node rbnode;
- int i;
- };
-
- //红黑树最大节点数目
- #define MAX_NUM 20
-
- struct int_rbtree * int_search(struct rb_root *root, int key) {
- struct rb_node *node = root->rb_node;
- while (node) {
- struct int_rbtree *data = container_of(node, struct int_rbtree, rbnode);
- if (key < data->i)
- node = node->rb_left;
- else if (key > data->i)
- node = node->rb_right;
- else
- return data;
- }
- return NULL;
- }
-
- int int_insert(struct rb_root *root, struct int_rbtree *data) {
- struct rb_node **newnode = &(root->rb_node), *parent = NULL;
- /* Figure out where to put new node */
- while (*newnode) {
- struct int_rbtree *thisnode =
- container_of(*newnode, struct int_rbtree, rbnode);
- parent = *newnode;
- if (data->i < thisnode->i)
- newnode = &((*newnode)->rb_left);
- else if (data->i > thisnode->i)
- newnode = &((*newnode)->rb_right);
- else
- return 0;
- }
- /* Add new node and rebalance tree. */
- rb_link_node(&data->rbnode, parent, newnode);
- rb_insert_color(&data->rbnode, root);
- return 1;
- }
测试主程序
- void testrbtree() {
- struct rb_node *node; // rb node
- struct rb_root root = RB_ROOT; //root node
- int i = 0;
-
- //insert
- for (i = 0; i < MAX_NUM; i = i + 2) {
- //分配节点,删除时需释放节点
- struct int_rbtree *inttree = malloc(sizeof(struct int_rbtree));
- memset(inttree, 0, sizeof(struct int_rbtree));
- inttree->i = i;
-
- int res = int_insert(&root, inttree);
- if (res) {
- printf("insert %d succeed\n", i);
- } else {
- printf("insert %d failed\n", i);
- }
- }
-
- for (i = 1; i < MAX_NUM; i = i + 2) {
- struct int_rbtree *inttree = malloc(sizeof(struct int_rbtree));
- memset(inttree, 0, sizeof(struct int_rbtree));
- inttree->i = i;
- int res = int_insert(&root, inttree);
- if (res) {
- printf("insert %d succeed\n", i);
- } else {
- printf("insert %d failed\n", i);
- }
- }
-
- //travel
- printf("begin to travel tree\n");
- for (node = rb_first(&root); node; node = rb_next(node)) {
- printf("key %d \n", rb_entry(node, struct int_rbtree, rbnode)->i);
- }
- printf("end to travel tree\n");
-
- //delete
- srand(time(NULL));
- int key = rand() % MAX_NUM;
- struct int_rbtree *data = int_search(&root, key);
- if (NULL != data) {
- rb_erase(&data->rbnode, &root);
- //删除时需释放节点
- free(data);
- data = NULL;
- printf("is going to delete key %d \n", key);
- } else {
- printf("key %d is not in the tree\n", key);
- return;
- }
- data = int_search(&root, key);
- if (NULL != data) {
- printf("delete key %d failed\n", key);
- } else {
- printf("delete key %d succeed\n", key);
- }
-
- return;
- }
只要在main函数中调用这个测试函数即可。
同时,有需要的朋友可以从http://download.csdn.net/detail/it_pcode/6632917下载本博文代码。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。