赞
踩
-
- import numpy as np
- import pandas as pd
- import tensorflow as tf
-
- np.random.seed(1)
- tf.set_random_seed(1)
-
-
- # Deep Q Network off-policy
- class DeepQNetwork:
- def __init__(
- self,
- n_actions,
- n_features,
- learning_rate=0.01,
- reward_decay=0.9,
- e_greedy=0.9,
- replace_target_iter=300,
- memory_size=500,
- batch_size=32,
- e_greedy_increment=None,
- output_graph=False,
- ):
- self.n_actions = n_actions
- self.n_features = n_features
- self.lr = learning_rate
- self.gamma = reward_decay
- self.epsilon_max = e_greedy
- self.replace_target_iter = replace_target_iter
- self.memory_size = memory_size
- self.batch_size = batch_size
- self.epsilon_increment = e_greedy_increment
- self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
-
- # total learning step
- self.learn_step_counter = 0
-
- # initialize zero memory [s, a, r, s_]
- self.memory = np.zeros((self.memory_size, n_features * 2 + 2))
-
- # consist of [target_net, evaluate_net]
- self._build_net()
- #tf.get_collection(key, scope=None)
- #用来获取一个名称是‘key’的集合中的所有元素,返回的是一个列表
- t_params = tf.get_collection('target_net_params')
- e_params = tf.get_collection('eval_net_params')
- self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
-
- self.sess = tf.Session()
-
- if output_graph:
- # $ tensorboard --logdir=logs
- # tf.train.SummaryWriter soon be deprecated, use following
- tf.summary.FileWriter("logs/", self.sess.graph)
-
- self.sess.run(tf.global_variables_initializer())
- self.cost_his = []
-
- def _build_net(self):
- # ------------------ build evaluate_net ------------------
- self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')
- # input
- self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # for calculating loss
- with tf.variable_scope('eval_net'):
- # c_names(collections_names) are the collections to store variables
- c_names, n_l1, w_initializer, b_initializer = \
- ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
- tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers
-
- # first layer. collections is used later when assign to target net
- with tf.variable_scope('l1'):
- w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
- b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
- l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)
-
- # second layer. collections is used later when assign to target net
- with tf.variable_scope('l2'):
- w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
- b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
- self.q_eval = tf.matmul(l1, w2) + b2 #[batch_size,self.n_action]
-
- with tf.variable_scope('loss'):
- self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
- with tf.variable_scope('train'):
- self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
-
- # ------------------ build target_net ------------------
- self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input
- with tf.variable_scope('target_net'):
- # c_names(collections_names) are the collections to store variables
- c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]
-
- # first layer. collections is used later when assign to target net
- with tf.variable_scope('l1'):
- w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
- b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
- l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)
-
- # second layer. collections is used later when assign to target net
- with tf.variable_scope('l2'):
- w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
- b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
- self.q_next = tf.matmul(l1, w2) + b2
-
- def store_transition(self, s, a, r, s_):
- if not hasattr(self, 'memory_counter'):
- self.memory_counter = 0
-
- transition = np.hstack((s, [a, r], s_))
-
- # replace the old memory with new memory
- index = self.memory_counter % self.memory_size
- self.memory[index, :] = transition
-
- self.memory_counter += 1
-
- def choose_action(self, observation):
- # to have batch dimension when feed into tf placeholder
- observation = observation[np.newaxis, :] #shape=(1,n_features)
-
- if np.random.uniform() < self.epsilon:
- # forward feed the observation and get q value for every actions
- actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
- action = np.argmax(actions_value)#未加axis=,返回一个索引数值
- else:
- action = np.random.randint(0, self.n_actions)
- return action
-
- def learn(self):
- # check to replace target parameters
- if self.learn_step_counter % self.replace_target_iter == 0:
- self.sess.run(self.replace_target_op)
- print('\ntarget_params_replaced\n')
-
- # sample batch memory from all memory
- if self.memory_counter > self.memory_size:
- sample_index = np.random.choice(self.memory_size, size=self.batch_size)
- else:
- sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
- batch_memory = self.memory[sample_index, :]
-
- q_next, q_eval = self.sess.run(
- [self.q_next, self.q_eval],
- feed_dict={
- #[s, a, r, s_]
- self.s_: batch_memory[:, -self.n_features:], # fixed params
- self.s: batch_memory[:, :self.n_features], # newest params
- })
-
- # change q_target w.r.t q_eval's action
- q_target = q_eval.copy()
- batch_index = np.arange(self.batch_size, dtype=np.int32)
- eval_act_index = batch_memory[:, self.n_features].astype(int) #action astype(int) 转换数组的数据类型
- reward = batch_memory[:, self.n_features + 1] #reward
- q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)
- """
- For example in this batch I have 2 samples and 3 actions:
- q_eval =
- [[1, 2, 3],
- [4, 5, 6]]
- q_target = q_eval =
- [[1, 2, 3],
- [4, 5, 6]]
- Then change q_target with the real q_target value w.r.t the q_eval's action.
- For example in:
- sample 0, I took action 0, and the max q_target value is -1;
- sample 1, I took action 2, and the max q_target value is -2:
- q_target =
- [[-1, 2, 3],
- [4, 5, -2]]
-
- So the (q_target - q_eval) becomes:
- [[(-1)-(1), 0, 0],
- [0, 0, (-2)-(6)]]
-
- We then backpropagate this error w.r.t the corresponding action to network,
- leave other action as error=0 cause we didn't choose it.
- """
- # train eval network
- _, self.cost = self.sess.run([self._train_op, self.loss],
- feed_dict={self.s: batch_memory[:, :self.n_features],
- self.q_target: q_target})
- self.cost_his.append(self.cost)
- # increasing epsilon
- self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
- self.learn_step_counter += 1
- def plot_cost(self):
- import matplotlib.pyplot as plt
- plt.plot(np.arange(len(self.cost_his)), self.cost_his)
- plt.ylabel('Cost')
- plt.xlabel('training steps')
- plt.show()

- from maze_env import Maze
- from RL_brain import DeepQNetwork
-
-
- def run_maze():
- step = 0
- for episode in range(300):
- # initial observation
- observation = env.reset()
-
- while True:
- # fresh env
- env.render()
-
- # RL choose action based on observation
- action = RL.choose_action(observation)
-
- # RL take action and get next observation and reward
- observation_, reward, done = env.step(action)
-
- RL.store_transition(observation, action, reward, observation_)
-
- if (step > 200) and (step % 5 == 0):
- RL.learn()
-
- # swap observation
- observation = observation_
-
- # break while loop when end of this episode
- if done:
- break
- step += 1
-
- # end of game
- print('game over')
- env.destroy()
-
-
- if __name__ == "__main__":
- # maze game
- env = Maze()
- RL = DeepQNetwork(env.n_actions, env.n_features,
- learning_rate=0.01,
- reward_decay=0.9,
- e_greedy=0.9,
- replace_target_iter=200,
- memory_size=2000,
- # output_graph=True
- )
- env.after(100, run_maze)
- env.mainloop()
- RL.plot_cost()

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。