函数内部的静态局部变量的初始化是在函数第一次调用时执行; 在之后的调用中不会对其初始化。 在多线程环境下,仍能够保证静态局部变量被安全地初始化,并只初始化一次。下面通过代码来分析一些具体的细节:
void foo() { static Bar bar; // ... }
通过观察 gcc 4.8.3 为上述代码生成的汇编代码, 我们可以看到编译器生成了具有如下语义的代码:
void foo() { if ((guard_for_bar & 0xff) == 0) { if (__cxa_guard_acquire(&guard_for_bar)) { try { Bar::Bar(&bar); } catch (...) { __cxa_guard_abort(&guard_for_bar); throw; } __cxa_guard_release(&guard_for_bar); __cxa_atexit(Bar::~Bar, &bar, &__dso_handle); } } // ... }
虽然 bar 是 foo 的局部变量, 但是编译器在处理上与全局静态变量类似, 均存储在 bss 段 (section), 只是 bar 在汇编语言层面上的符号名称是对 foo()::bar 的编码 (mangling),具体细节这里不做过多讨论。 guard_for_bar 是一个用来保证线程安全和一次性初始化的整型变量,是编译器生成的,存储在 bss 段。它的最低的一个字节被用作相应静态变量是否已被初始化的标志, 若为 0 表示还未被初始化,否则表示已被初始化。__cxa_guard_acquire 实际上是一个加锁的过程, 相应的 __cxa_guard_abort 和 __cxa_guard_release 释放锁。__cxa_atexit 注册在调用 exit 时或动态链接库(或共享库) 被卸载时执行的函数, 这里注册的是Bar的析构函数。值得一提的是__cxa_atexit可被用来实现atexit, atexit(func) 等价于 __cxa_atexit(func, NULL, NULL) (__cxa_atexit 函数原型: int __cxa_atexit(void (*func) (void *), void * arg, void * dso_handle))。
下面列出 __cxa_guard_acquire、 __cxa_guard_abort 和 __cxa_guard_release 这三个二进制标准接口(Itanium C++ ABI)的一种具体实现的源代码:
// From : http://www.opensource.apple.com/source/libcppabi/libcppabi-14/src/cxa_guard.cxx // Headers (omitted) // Note don't use function local statics to avoid use of cxa functions... static pthread_mutex_t __guard_mutex; static pthread_once_t __once_control = PTHREAD_ONCE_INIT; static void makeRecusiveMutex() // 将 __guard_mutex 初始化为递归锁 { pthread_mutexattr_t recursiveMutexAttr; pthread_mutexattr_init(&recursiveMutexAttr); pthread_mutexattr_settype(&recursiveMutexAttr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&__guard_mutex, &recursiveMutexAttr); } __attribute__((noinline)) static pthread_mutex_t* guard_mutex() { pthread_once(&__once_control, &makeRecusiveMutex); // 一次性初始化 __guard_mutex return &__guard_mutex; } // helper functions for getting/setting flags in guard_object static bool initializerHasRun(uint64_t* guard_object) { // 取最低字节作为是否已初始化的标志 return ( *((uint8_t*)guard_object) != 0 ); } static void setInitializerHasRun(uint64_t* guard_object) { *((uint8_t*)guard_object) = 1; } static bool inUse(uint64_t* guard_object) { // 取次低字节作为 guard_object 是否正在被某个线程使用的标志 return ( ((uint8_t*)guard_object)[1] != 0 ); } static void setInUse(uint64_t* guard_object) { ((uint8_t*)guard_object)[1] = 1; } static void setNotInUse(uint64_t* guard_object) { ((uint8_t*)guard_object)[1] = 0; } // // Returns 1 if the caller needs to run the initializer and then either // call __cxa_guard_release() or __cxa_guard_abort(). If zero is returned, // then the initializer has already been run. This function blocks // if another thread is currently running the initializer. This function // aborts if called again on the same guard object without an intervening // call to __cxa_guard_release() or __cxa_guard_abort(). // int __cxxabiv1::__cxa_guard_acquire(uint64_t* guard_object) { // Double check that the initializer has not already been run if ( initializerHasRun(guard_object) ) // 如果对象已被初始化 return 0; // We now need to acquire a lock that allows only one thread // to run the initializer. If a different thread calls // __cxa_guard_acquire() with the same guard object, we want // that thread to block until this thread is done running the // initializer and calls __cxa_guard_release(). But if the same // thread calls __cxa_guard_acquire() with the same guard object, // we want to abort. // To implement this we have one global pthread recursive mutex // shared by all guard objects, but only one at a time. int result = ::pthread_mutex_lock(guard_mutex()); if ( result != 0 ) { abort_message("__cxa_guard_acquire(): pthread_mutex_lock " "failed with %d\n", result); } // At this point all other threads will block in __cxa_guard_acquire() // Check if another thread has completed initializer run if ( initializerHasRun(guard_object) ) { // 再次判断, 对象是否已被其他线程初始化 int result = ::pthread_mutex_unlock(guard_mutex()); if ( result != 0 ) { abort_message("__cxa_guard_acquire(): pthread_mutex_unlock " "failed with %d\n", result); } return 0; } // The pthread mutex is recursive to allow other lazy initialized // function locals to be evaluated during evaluation of this one. // But if the same thread can call __cxa_guard_acquire() on the // *same* guard object again, we call abort(); if ( inUse(guard_object) ) { abort_message("__cxa_guard_acquire(): initializer for function " "local static variable called enclosing function\n"); } // mark this guard object as being in use setInUse(guard_object); // return non-zero to tell caller to run initializer return 1; } // // Sets the first byte of the guard_object to a non-zero value. // Releases any locks acquired by __cxa_guard_acquire(). // void __cxxabiv1::__cxa_guard_release(uint64_t* guard_object) { // first mark initalizer as having been run, so // other threads won't try to re-run it. setInitializerHasRun(guard_object); // release global mutex int result = ::pthread_mutex_unlock(guard_mutex()); if ( result != 0 ) { abort_message("__cxa_guard_acquire(): pthread_mutex_unlock " "failed with %d\n", result); } } // // Releases any locks acquired by __cxa_guard_acquire(). // void __cxxabiv1::__cxa_guard_abort(uint64_t* guard_object) // 初始化异常时被调用 { int result = ::pthread_mutex_unlock(guard_mutex()); if ( result != 0 ) { abort_message("__cxa_guard_abort(): pthread_mutex_unlock " "failed with %d\n", result); } // now reset state, so possible to try to initialize again setNotInUse(guard_object); }
最后提供一个很有价值的参考: http://wiki.osdev.org/C%2B%2B