赞
踩
本篇文章主要是解读模型主体代码modeling.py。在阅读这篇文章之前希望读者们对bert的相关理论有一定的了解,尤其是transformer的结构原理,网上的资料很多,本文内容对原理部分就不做过多的介绍了。
我自己写出来其中一个目的也是帮助自己学习整理、当你输出的时候才也会明白哪里懂了哪里不懂。因为水平有限,很多地方理解不到位的,还请各位批评指正。
- class BertConfig(object):
- """Configuration for `BertModel`."""
-
- def __init__(self,
- vocab_size,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=512,
- type_vocab_size=16,
- initializer_range=0.02):
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.hidden_act = hidden_act
- self.intermediate_size = intermediate_size
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.max_position_embeddings = max_position_embeddings
- self.type_vocab_size = type_vocab_size
- self.initializer_range = initializer_range
模型配置,比较简单,依次是:词典大小、隐层神经元个数、transformer的层数、attention的头数、激活函数、中间层神经元个数、隐层dropout比例、attention里面dropout比例、sequence最大长度、token_type_ids的词典大小、truncated_normal_initializer的stdev。
- def embedding_lookup(input_ids,
- vocab_size,
- embedding_size=128,
- initializer_range=0.02,
- word_embedding_name="word_embeddings",
- use_one_hot_embeddings=False):
- if input_ids.shape.ndims == 2:
- input_ids = tf.expand_dims(input_ids, axis=[-1])
-
- embedding_table = tf.get_variable(
- name=word_embedding_name,
- shape=[vocab_size, embedding_size],
- initializer=create_initializer(initializer_range))
-
- if use_one_hot_embeddings:
- flat_input_ids = tf.reshape(input_ids, [-1])
- one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
- output = tf.matmul(one_hot_input_ids, embedding_table)
- else:
- output = tf.nn.embedding_lookup(embedding_table, input_ids)
-
- input_shape = get_shape_list(input_ids)
-
- output = tf.reshape(output,
- input_shape[0:-1] + [input_shape[-1] * embedding_size])
- return (output, embedding_table)
构造embedding_table,进行word embedding,可选one_hot的方式,返回embedding的结果和embedding_table
- def embedding_postprocessor(input_tensor,
- use_token_type=False,
- token_type_ids=None,
- token_type_vocab_size=16,
- token_type_embedding_name="token_type_embeddings",
- use_position_embeddings=True,
- position_embedding_name="position_embeddings",
- initializer_range=0.02,
- max_position_embeddings=512,
- dropout_prob=0.1):
- input_shape = get_shape_list(input_tensor, expected_rank=3)
- batch_size = input_shape[0]
- seq_length = input_shape[1]
- width = input_shape[2]
- output = input_tensor
- if use_token_type:
- if token_type_ids is None:
- raise ValueError("`token_type_ids` must be specified if"
- "`use_token_type` is True.")
- token_type_table = tf.get_variable(
- name=token_type_embedding_name,
- shape=[token_type_vocab_size, width],
- initializer=create_initializer(initializer_range))
- flat_token_type_ids = tf.reshape(token_type_ids, [-1])
- one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
- token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
- token_type_embeddings = tf.reshape(token_type_embeddings,
- [batch_size, seq_length, width])
- output += token_type_embeddings
- if use_position_embeddings:
- assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
- with tf.control_dependencies([assert_op]):
- full_position_embeddings = tf.get_variable(
- name=position_embedding_name,
- shape=[max_position_embeddings, width],
- initializer=create_initializer(initializer_range))
- position_embeddings = tf.slice(full_position_embeddings, [0, 0],
- [seq_length, -1])
- num_dims = len(output.shape.as_list())
- position_broadcast_shape = []
- for _ in range(num_dims - 2):
- position_broadcast_shape.append(1)
- position_broadcast_shape.extend([seq_length, width])
- position_embeddings = tf.reshape(position_embeddings,
- position_broadcast_shape)
- output += position_embeddings
- output = layer_norm_and_dropout(output, dropout_prob)
- return output
主要是信息添加,可以将word的位置和word对应的token type等信息添加到词向量里面,并且layer正则化和dropout之后返回
- def create_attention_mask_from_input_mask(from_tensor, to_mask):
- from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
- batch_size = from_shape[0]
- from_seq_length = from_shape[1]
- to_shape = get_shape_list(to_mask, expected_rank=2)
- to_seq_length = to_shape[1]
- to_mask = tf.cast(
- tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)
- broadcast_ones = tf.ones(
- shape=[batch_size, from_seq_length, 1], dtype=tf.float32)
- mask = broadcast_ones * to_mask
- return mask
将shape为[batch_size, to_seq_length]的2D mask转换为一个shape 为[batch_size, from_seq_length, to_seq_length] 的3D mask用于attention当中。
- def attention_layer(from_tensor,
- to_tensor,
- attention_mask=None,
- num_attention_heads=1,
- size_per_head=512,
- query_act=None,
- key_act=None,
- value_act=None,
- attention_probs_dropout_prob=0.0,
- initializer_range=0.02,
- do_return_2d_tensor=False,
- batch_size=None,
- from_seq_length=None,
- to_seq_length=None):
- def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
- seq_length, width):
- output_tensor = tf.reshape(
- input_tensor, [batch_size, seq_length, num_attention_heads, width])
-
- output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
- return output_tensor
-
- from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
- to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
-
- if len(from_shape) != len(to_shape):
- raise ValueError(
- "The rank of `from_tensor` must match the rank of `to_tensor`.")
-
- if len(from_shape) == 3:
- batch_size = from_shape[0]
- from_seq_length = from_shape[1]
- to_seq_length = to_shape[1]
- elif len(from_shape) == 2:
- if (batch_size is None or from_seq_length is None or to_seq_length is None):
- raise ValueError(
- "When passing in rank 2 tensors to attention_layer, the values "
- "for `batch_size`, `from_seq_length`, and `to_seq_length` "
- "must all be specified.")
-
- # Scalar dimensions referenced here:
- # B = batch size (number of sequences)
- # F = `from_tensor` sequence length
- # T = `to_tensor` sequence length
- # N = `num_attention_heads`
- # H = `size_per_head`
-
- from_tensor_2d = reshape_to_matrix(from_tensor)
- to_tensor_2d = reshape_to_matrix(to_tensor)
-
- # `query_layer` = [B*F, N*H]
- query_layer = tf.layers.dense(
- from_tensor_2d,
- num_attention_heads * size_per_head,
- activation=query_act,
- name="query",
- kernel_initializer=create_initializer(initializer_range))
-
- # `key_layer` = [B*T, N*H]
- key_layer = tf.layers.dense(
- to_tensor_2d,
- num_attention_heads * size_per_head,
- activation=key_act,
- name="key",
- kernel_initializer=create_initializer(initializer_range))
-
- # `value_layer` = [B*T, N*H]
- value_layer = tf.layers.dense(
- to_tensor_2d,
- num_attention_heads * size_per_head,
- activation=value_act,
- name="value",
- kernel_initializer=create_initializer(initializer_range))
-
- # `query_layer` = [B, N, F, H]
- query_layer = transpose_for_scores(query_layer, batch_size,
- num_attention_heads, from_seq_length,
- size_per_head)
-
- # `key_layer` = [B, N, T, H]
- key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
- to_seq_length, size_per_head)
-
- attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
- attention_scores = tf.multiply(attention_scores,
- 1.0 / math.sqrt(float(size_per_head)))
-
- if attention_mask is not None:
- # `attention_mask` = [B, 1, F, T]
- attention_mask = tf.expand_dims(attention_mask, axis=[1])
-
- adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
-
- attention_scores += adder
-
- attention_probs = tf.nn.softmax(attention_scores)
-
- attention_probs = dropout(attention_probs, attention_probs_dropout_prob)
-
- # `value_layer` = [B, T, N, H]
- value_layer = tf.reshape(
- value_layer,
- [batch_size, to_seq_length, num_attention_heads, size_per_head])
-
- # `value_layer` = [B, N, T, H]
- value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
-
- # `context_layer` = [B, N, F, H]
- context_layer = tf.matmul(attention_probs, value_layer)
-
- # `context_layer` = [B, F, N, H]
- context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
-
- if do_return_2d_tensor:
- # `context_layer` = [B*F, N*V]
- context_layer = tf.reshape(
- context_layer,
- [batch_size * from_seq_length, num_attention_heads * size_per_head])
- else:
- # `context_layer` = [B, F, N*V]
- context_layer = tf.reshape(
- context_layer,
- [batch_size, from_seq_length, num_attention_heads * size_per_head])
-
- return context_layer
整个网络的重头戏来了!tansformer的主要内容都在这里面,输入的from_tensor当作query,to_tensor当作key和value。当self attention的时候from_tensor和to_tensor是同一个值。
(1)函数一开始对输入的shape进行校验,获取batch_size、from_seq_length 、to_seq_length 。输入如果是3D张量则转化成2D矩阵(以输入为word_embedding为例[batch_size, seq_lenth, hidden_size] -> [batch_size*seq_lenth, hidden_size])
(2)通过全连接线性投影生成query_layer、key_layer 、value_layer,输出的第二个维度变成num_attention_heads * size_per_head(整个模型默认hidden_size=num_attention_heads * size_per_head)。然后通过transpose_for_scores转换成多头。
(3)根据公式计算attention_probs(attention score):
Attention Score计算公式
如果attention_mask is not None,对mask的部分加上一个很大的负数,这样softmax之后相应的概率值接近为0,再dropout。
(4)最后再将value和attention_probs相乘,返回3D张量或者2D矩阵
总结:
同学们可以将这段代码与网络结构图对照起来看:
Attention Layer
该函数相比其他版本的的transformer很多地方都有简化,有以下四点:
(1)缺少scale的操作;
(2)没有Causality mask,个人猜测主要是bert没有decoder的操作,所以对角矩阵mask是不需要的,从另一方面来说正好体现了双向transformer的特点;
(3)没有query mask。跟(2)理由类似,encoder都是self attention,query和key相同所以只需要一次key mask就够了
(4)没有query的Residual层和normalize
- def transformer_model(input_tensor,
- attention_mask=None,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- intermediate_act_fn=gelu,
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- initializer_range=0.02,
- do_return_all_layers=False):
- if hidden_size % num_attention_heads != 0:
- raise ValueError(
- "The hidden size (%d) is not a multiple of the number of attention "
- "heads (%d)" % (hidden_size, num_attention_heads))
-
- attention_head_size = int(hidden_size / num_attention_heads)
- input_shape = get_shape_list(input_tensor, expected_rank=3)
- batch_size = input_shape[0]
- seq_length = input_shape[1]
- input_width = input_shape[2]
-
- if input_width != hidden_size:
- raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
- (input_width, hidden_size))
-
- prev_output = reshape_to_matrix(input_tensor)
-
- all_layer_outputs = []
- for layer_idx in range(num_hidden_layers):
- with tf.variable_scope("layer_%d" % layer_idx):
- layer_input = prev_output
-
- with tf.variable_scope("attention"):
- attention_heads = []
- with tf.variable_scope("self"):
- attention_head = attention_layer(
- from_tensor=layer_input,
- to_tensor=layer_input,
- attention_mask=attention_mask,
- num_attention_heads=num_attention_heads,
- size_per_head=attention_head_size,
- attention_probs_dropout_prob=attention_probs_dropout_prob,
- initializer_range=initializer_range,
- do_return_2d_tensor=True,
- batch_size=batch_size,
- from_seq_length=seq_length,
- to_seq_length=seq_length)
- attention_heads.append(attention_head)
-
- attention_output = None
- if len(attention_heads) == 1:
- attention_output = attention_heads[0]
- else:
- attention_output = tf.concat(attention_heads, axis=-1)
- with tf.variable_scope("output"):
- attention_output = tf.layers.dense(
- attention_output,
- hidden_size,
- kernel_initializer=create_initializer(initializer_range))
- attention_output = dropout(attention_output, hidden_dropout_prob)
- attention_output = layer_norm(attention_output + layer_input)
-
- with tf.variable_scope("intermediate"):
- intermediate_output = tf.layers.dense(
- attention_output,
- intermediate_size,
- activation=intermediate_act_fn,
- kernel_initializer=create_initializer(initializer_range))
-
- with tf.variable_scope("output"):
- layer_output = tf.layers.dense(
- intermediate_output,
- hidden_size,
- kernel_initializer=create_initializer(initializer_range))
- layer_output = dropout(layer_output, hidden_dropout_prob)
- layer_output = layer_norm(layer_output + attention_output)
- prev_output = layer_output
- all_layer_outputs.append(layer_output)
-
- if do_return_all_layers:
- final_outputs = []
- for layer_output in all_layer_outputs:
- final_output = reshape_from_matrix(layer_output, input_shape)
- final_outputs.append(final_output)
- return final_outputs
- else:
- final_output = reshape_from_matrix(prev_output, input_shape)
- return final_output
transformer是对attention的利用,分以下几步:
(1)计算attention_head_size,attention_head_size = int(hidden_size / num_attention_heads)即将隐层的输出等分给各个attention头。然后将input_tensor转换成2D矩阵;
(2)对input_tensor进行多头attention操作,再做:线性投影——dropout——layer norm——intermediate线性投影——线性投影——dropout——attention_output的residual——layer norm
其中intermediate线性投影的hidden_size可以自行指定,其他层的线性投影hidden_size需要统一,目的是为了对齐。
(3)如此循环计算若干次,且保存每一次的输出,最后返回所有层的输出或者最后一层的输出。
总结:
进一步证实该函数transformer只存在encoder,而不存在decoder操作,所以所有层的多头attention操作都是基于self encoder的。对应论文红框的部分:
The Transformer - model architecture
- class BertModel(object):
- def __init__(self,
- config,
- is_training,
- input_ids,
- input_mask=None,
- token_type_ids=None,
- use_one_hot_embeddings=True,
- scope=None):
- config = copy.deepcopy(config)
- if not is_training:
- config.hidden_dropout_prob = 0.0
- config.attention_probs_dropout_prob = 0.0
-
- input_shape = get_shape_list(input_ids, expected_rank=2)
- batch_size = input_shape[0]
- seq_length = input_shape[1]
-
- if input_mask is None:
- input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
-
- if token_type_ids is None:
- token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
-
- with tf.variable_scope(scope, default_name="bert"):
- with tf.variable_scope("embeddings"):
- (self.embedding_output, self.embedding_table) = embedding_lookup(
- input_ids=input_ids,
- vocab_size=config.vocab_size,
- embedding_size=config.hidden_size,
- initializer_range=config.initializer_range,
- word_embedding_name="word_embeddings",
- use_one_hot_embeddings=use_one_hot_embeddings)
-
- self.embedding_output = embedding_postprocessor(
- input_tensor=self.embedding_output,
- use_token_type=True,
- token_type_ids=token_type_ids,
- token_type_vocab_size=config.type_vocab_size,
- token_type_embedding_name="token_type_embeddings",
- use_position_embeddings=True,
- position_embedding_name="position_embeddings",
- initializer_range=config.initializer_range,
- max_position_embeddings=config.max_position_embeddings,
- dropout_prob=config.hidden_dropout_prob)
-
- with tf.variable_scope("encoder"):
- attention_mask = create_attention_mask_from_input_mask(
- input_ids, input_mask)
-
- self.all_encoder_layers = transformer_model(
- input_tensor=self.embedding_output,
- attention_mask=attention_mask,
- hidden_size=config.hidden_size,
- num_hidden_layers=config.num_hidden_layers,
- num_attention_heads=config.num_attention_heads,
- intermediate_size=config.intermediate_size,
- intermediate_act_fn=get_activation(config.hidden_act),
- hidden_dropout_prob=config.hidden_dropout_prob,
- attention_probs_dropout_prob=config.attention_probs_dropout_prob,
- initializer_range=config.initializer_range,
- do_return_all_layers=True)
-
- self.sequence_output = self.all_encoder_layers[-1]
- with tf.variable_scope("pooler"):
- first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
- self.pooled_output = tf.layers.dense(
- first_token_tensor,
- config.hidden_size,
- activation=tf.tanh,
- kernel_initializer=create_initializer(config.initializer_range))
终于到模型入口了。
(1)设置各种参数,如果input_mask为None的话,就指定所有input_mask值为1,即不进行过滤;如果token_type_ids是None的话,就指定所有token_type_ids值为0;
(2)对输入的input_ids进行embedding操作,再embedding_postprocessor操作,前面我们说了。主要是加入位置和token_type信息到词向量里面;
(3)转换attention_mask 后,通过调用transformer_model进行encoder操作;
(4)获取最后一层的输出sequence_output和pooled_output,pooled_output是取sequence_output的第一个切片然后线性投影获得(可以用于分类问题)
(1)bert主要流程是先embedding(包括位置和token_type的embedding),然后调用transformer得到输出结果,其中embedding、embedding_table、所有transformer层输出、最后transformer层输出以及pooled_output都可以获得,用于迁移学习的fine-tune和预测任务;
(2)bert对于transformer的使用仅限于encoder,没有decoder的过程。这是因为模型存粹是为了预训练服务,而预训练是通过语言模型,不同于NLP其他特定任务。在做迁移学习时可以自行添加;
(3)正因为没有decoder的操作,所以在attention函数里面也相应地减少了很多不必要的功能。
其他非主要函数这里不做过多介绍,感兴趣的同学可以去看源码。
下一篇文章我们将继续学习bert源码的其他模块,包括训练、预测以及输入输出等相关功能。
作者:西溪雷神
链接:https://www.jianshu.com/p/d7ce41b58801
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。