赞
踩
如果有不清楚的地方可以评论区留言,我会给大家补上的!
本文包括:
Prompt 的一些行业术语介绍
Prompt 写好提示词的方法经验介绍(附示例教程)
LLM自身存在的问题(可以用Prompt解决的以及无法用Prompt解决的)
定向刺激提示与标准提示
定向刺激:需要特定信息或在特定情境下的问题
详细地说明,“这是一朵玫瑰,它有红色的花瓣和带刺的茎。” 你给予的信息是具体的、有方向的,旨在引导他更准确地识别玫瑰。
标准提示:普遍性回答的场景
“这是一朵花,你认为是什么种类?”这里你没有给出具体的指引,只是提出了一个开放式的问题。标准提示就是这样,它不包含额外的指导或信息,让模型自己去解释和回答。这种提示更加通用,可以适用于更多的情况,但可能不会像定向刺激提示那样引导出特定类型的回答。
输入:问题+文本+选项
输出:基本原理+回答
程序辅助语言模型 (PAL)
输入(用户提供):
提示(用户给模型):
我有一系列的数字:3, 7, 2, 8。我需要计算它们的总和。请写一个Python脚本来计算这些数字的总和。
输出(模型生成):
回答(模型给出的Python脚本):
# Python脚本来计算数字总和
numbers = [3, 7, 2, 8]
total_sum = sum(numbers)
print("数字的总和是:", total_sum)
提示词列表
随机指示必须出现的词语
(比如儿童list[
“王子”, “公主”, “巫婆”, “巨人”, “精灵”, “小动物”,
“魔法”, “魔法森林”, “魔法法杖”, “魔法咒语”,
“冒险”, “困难”, “危险”,
“友情”, “朋友”, “支持”, “关心”,
“爱情”, “浪漫”,
“家庭”, “亲子关系”,
“冒险之旅”, “未知世界”, “新朋友”,
“奇幻世界”, “仙境”, “仙女王国”, “奇幻森林”,
“教育”, “道德”, “品德”, “解决问题”,
“快乐结局”,
“魔毯”, “魔镜”, “魔法戒指”
])
训练数据、教科书式训练、扩充训练:目标受众对应训练数据不一样
Auto-CoT通常是通过训练过程中使用特定的数据集和训练策略来实现的,让模型学会在给出答案前先展现出解题的逻辑链条。
+rawinst
: 用户直接提供指导。“请按照五段式论文的格式回答以下问题…”+sysinst
: 系统提供角色和任务说明。“作为一个旅行顾问,你应该提供…”+bothinst
: 指导分为用户消息和系统消息。+bothinst
策略时,F1得分提升至87.5%。https://arxiv.org/pdf/2303.17466.pdf
https://arxiv.org/ftp/arxiv/papers/2303/2303.16281.pdf
https://www.promptingguide.ai/applications/pf
DO NOT SAY THINGS ELSE OK, UNLESS YOU DONT UNDERSTAND THE FUNCTION
只要输出……,其余不要输出。
现在你是导演,我讲给你补充知识和示例,你需要为我的故事设计连续并且完整的多个镜头,并将这些镜头整理成文字给我。我将给你这个故事的剧本,请按照故事剧本里的内容,将故事剧本的内容进行分拆,并转化成摄像机从开始到结束的画面,分拆后的每一个画面作为一个镜头文本的内容。请注意,生成的镜头文本不要遗漏故事剧本里的内容,也不要重复地出现故事剧本的内容。保证你所设计的镜头,能让故事连贯、流畅、完整地展现。
+inst (instructions)
+sysinst
: 系统提供角色和任务说明。
reit 通过重复关键说明来强化指导。
知识补充:
2.镜头语言,你需要有创意性地设计镜头语言,镜头语言包括镜头种类和镜头角度。镜头种类有以下几种:单人镜头、双人镜头、多人镜头、过肩镜头、主观镜头;镜头角度有以下几种:平视、俯视、仰视、航拍。
提示词列表
7.你需要分析故事剧本的内容,对每一个镜头发生的地点进行补充。请按照以下顺序逐次进行补充细化:1、地点的具体名词,如卧室的床、花园的角落、厕所的马桶、树木的树根等。2、地点的造型特点,如陈旧腐朽的、整洁干净的、凌乱的等。……
CoT
**示例:**第1场,第1镜
#剧本原文#:一群人围在药店柜台前,手中还提着塑料袋,塑料袋里装着各种感冒药与退烧药(非特写)。
#镜头语言#:[‘多人镜头’,‘平视’]
#关键词#:[‘药店’,‘群众’,‘塑料袋’,‘感冒药’,‘退烧药’,‘中年男人’,‘柜台’,‘不耐烦’,‘离开’,‘气愤’,‘大声喊叫’,‘混乱’,‘焦急’,‘挤向柜台’,‘叙事重点’,‘情绪高涨’,‘失控’]
……
strict 要求模型严格按照给定的模板回答。
请逐步分析最后一句话表达的此时情况:
CoT
strict 要求模型严格按照给定的模板回答。
……
info 提供额外的信息以解决常见的推理失败。
reit 通过重复关键说明来强化指导。
5.相对位置推理结论
输出要求:根据上面的推理过程获得最后的相对位置。无论结果是什么,位置信息具体描述 以外的多余内容不要输出。如果未提供相对位置且无法推测,请直接输出“无法确定”,其余内容不用输出
只要输出……,其余不要输出。
www.promptingguide.ai
https://www.promptingguide.ai/applications/pf Prompt Engineering Guide
https://flowgpt.com/creative/stable-diffusion
https://arxiv.org/abs/2305.18189v1 标记角色:使用自然语言提示来衡量语言模型中的刻板印象
https://arxiv.org/abs/2301.01768 对话式人工智能的政治意识形态:ChatGPT 亲环境、左翼自由主义倾向的证据汇集
https://arxiv.org/abs/2303.16421 ChatGPT 是一个知识渊博但缺乏经验的求解器:大型语言模型中常识问题的调查
https://arxiv.org/abs/2304.05351 华尔街新手:针对多模式股票走势预测挑战的 ChatGPT 零样本分析
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。