赞
踩
Zero-Shot Information Extraction via Chatting with ChatGPT
利用ChatGPT实现零样本信息抽取(Information Extraction,IE),看到零样本就能大概明白这篇文章将以ChatGPT作为一个基座然后补全前后端,来实现抽取任务。主要针对抽取中的三个重要任务:
对于句子:《我的爱情日记》是1990年在北京上映的中国…
ChatIE如下图所示,
具体来说,ChatIE实现零样本的策略是将其任务转化为具有多轮提问-回答问题,主要分为两个阶段:
# 命名关系
# 先定义实体的类别
df_nert = {
'chinese': ['组织机构', '地点', '人物']
}
# 再输入到prompt中
ner_s1_p = {
'chinese': '''给定的句子为:"{}"\n\n给定实体类型列表:{}\n\n在这个句子中,可能包含了哪些实体类型?\n如果不存在则回答:无\n按照元组形式回复,如 (实体类型1, 实体类型2, ……):'''
}
# 关系抽取
# 先定义抽取的schema
df_ret = {
'chinese': {'所属专辑': ['歌曲', '音乐专辑'], '成立日期': ['机构', 'Date'], ....}
}
# 再输入到prompt中
re_s1_p = {
'chinese': '''给定的句子为:"{}"\n\n给定关系列表:{}\n\n在这个句子中,可能包含了哪些关系?\n请给出关系列表中的关系。\n如果不存在则回答:无\n按照元组形式回复,如 (关系1, 关系2, ……):'''
}
# 事件抽取
# 先事件的schema
df_eet = {
'chinese': {'灾害/意外-坠机': ['时间', '地点', '死亡人数', '受伤人数'],...}
}
# 再输入到prompt中
ee_s1_p = {
'chinese': '''给定的句子为:"{}"\n\n给定事件类型列表:{}\n\n在这个句子中,可能包含了哪些事件类型?\n请给出事件类型列表中的事件类型。\n如果不存在则回答:无\n按照元组形式回复,如 (事件类型1, 事件类型2, ……):'''
}
代码已经开源,包含了详细的前后端处理。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。