当前位置:   article > 正文

Python3网络爬虫:requests+mongodb+wordcloud 爬取豆瓣影评并生成词云_reviewer = tree.xpath("//div[@class='comment-item'

reviewer = tree.xpath("//div[@class='comment-item']//span[@class='comment-in

Python版本: python3.+
运行环境: Mac OS
IDE: pycharm

一 前言

  之前捣鼓了几日wordcloud词云,觉得很有意思,能自定义背景图、设置各式各样的字体、还能设置词的颜色。生成词云的时候也很有成就感。(233333)但是哪来的数据源呢?于是就想到了豆瓣网的影评。
  顺带(装模作样地)尝试了一下自顶向下的设计原则:

  1. 爬取豆瓣网指定电影的5000条影评;
  2. 存到数据库中;
  3. 从数据库中获取并处理评论,获得词频;
  4. 利用词频生成图云。

大(我)道(不)至(会)简(写),下面就按这个原则一步一步来。
不过在施工之前,要先准备好工具:

  • mongodb的安装:这个安装攻略网上有很多,在这里推荐菜鸟教程的, MAC OS/Linux/Windows的教程都有
  • jieba分词库的导入及简单使用:Github地址
  • wordcloud库的导入及简单使用:Github地址

二 豆瓣网影评爬取

1 网页分析

我们以春宵苦短,少女前进吧! 夜は短し歩けよ乙女 这部电影为例。
URL:https://movie.douban.com/subject/26935251/

这里写图片描述

在这个页往下拉拉到分评论,点击更多短评,跳转到评论页。

这里写图片描述

能发现URL的变化:
https://movie.douban.com/subject/26935251/comments?sort=new_score&status=P
其核心部分就是https://movie.douban.com/subject/26935251/comments,后面的?sort=new_score&status=P说明该网页以GET方式发送参数

这里写图片描述

Chrome浏览器下,通过工具栏进入开发者工具(快捷键:command+alt+i)

这里写图片描述

能发现评论的信息全在一个个的//div[@class="comment-item"]中间。
再拉倒页面底部,点击后页,在NetWork中抓包分析
这里写图片描述

能观察到发送数据的内容。再结合页面信息,不难发现start就是从第start条评论开始,limit就是当前页显示limit条评论;那这样,我们就能直接在循环中,在每次发送的数据中,更新start=start+limit直至最后接收到的页面评论数不大于0。

2 代码编写

利用这一点,就能构造出我们想要的爬虫了,代码如下:

import requests
from lxml import etree
import time


def get_comments(url,headers,start,max_restart_num,movie_name,collection):
    '''

    :param url: 请求页面的url
    :param headers: 请求头
    :param start: 第start条数据开始
    :param max_restart_num: 当获取失败时,最大重新请求次数
    :param movie_name: 电影名字
    :param collection: mongodb数据库的集合
    :return:
    '''
    if start >= 5000:
        print("已爬取5000条评论,结束爬取")
        return

    data = {
        'start': start,
        'limit': 20,
        'sort': 'new_score',
        'status': 'P',
    }
    response = requests.get(url=url, headers=headers, params=data)
    tree = etree.HTML(response.text)
    comment_item = tree.xpath('//div[@id ="comments"]/div[@class="comment-item"]')
    len_comments = len(comment_item)
    if len_comments > 0:
        for i in range(1, len_comments + 1):
            votes = tree.xpath('//div[@id ="comments"]/div[@class="comment-item"][{}]//span[@class="votes"]'.format(i))
            commenters = tree.xpath(
                '//div[@id ="comments"]/div[@class="comment-item"][{}]//span[@class="comment-info"]/a'.format(i))
            ratings = tree.xpath(
                '//div[@id ="comments"]/div[@class="comment-item"][{}]//span[@class="comment-info"]/span[contains(@class,"rating")]/@title'.format(
                    i))
            comments_time = tree.xpath(
                '//div[@id ="comments"]/div[@class="comment-item"][{}]//span[@class="comment-info"]/span[@class="comment-time "]'.format(
                    i))
            comments = tree.xpath(
                '//div[@id ="comments"]/div[@class="comment-item"][{}]/div[@class="comment"]/p'.format(i))

            vote = (votes[0].text.strip())
            commenter = (commenters[0].text.strip())
            try:
                rating = (str(ratings[0]))
            except:
                rating = 'null'
            comment_time = (comments_time[0].text.strip())
            comment = (comments[0].text.strip())

            comment_dict = {}
            comment_dict['vote'] = vote
            comment_dict['commenter'] = commenter
            comment_dict['rating'] = rating
            comment_dict['comments_time'] = comment_time
            comment_dict['comments'] = comment

            comment_dict['movie_name'] = movie_name
            #存入数据库

            print("正在存取第{}条数据".format(start+i))
            print(comment_dict)
            # collection.update({'commenter': comment_dict['commenter']}, {'$setOnInsert': comment_dict}, upsert=True)


        headers['Referer'] = response.url
        start += 20
        data['start'] = start
        time.sleep(5)
        return get_comments(url, headers, start, max_restart_num,movie_name,collection)
    else:
        # print(response.status_code)
        if max_restart_num>0 :
            if response.status_code != 200:
                print("fail to crawl ,waiting 10s to restart continuing crawl...")
                time.sleep(10)
                # headers['User-Agent'] = Headers.getUA()
                # print(start)
                return get_comments(url, headers, start, max_restart_num-1, movie_name, collection)
            else:
                print("finished crawling")
                return
        else:
            print("max_restart_num has run out")
            with open('log.txt',"a") as fp:
                fp.write('\n{}--latest start:{}'.format(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), start))
            return

if __name__ =='__main__':
    base_url = 'https://movie.douban.com/subject/26935251'
    headers = {
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36',
        'Upgrade-Insecure-Requests': '1',
        'Connection':'keep-alive',
        'Upgrade-Insecure-Requests':'1',
        'Host':'movie.douban.com',
    }
    start = 0
    response = requests.get(base_url,headers)
    tree = etree.HTML(response.text)
    movie_name = tree.xpath('//div[@id="content"]/h1/span')[0].text.strip()
    # print(movie_name)

    url = base_url+'/comments'

    try:
        get_comments(url, headers,start, 5, movie_name,None)
    finally:
        pass
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113

执行这个程序就能在控制台输不断地输出获取到的评论信息了,但是才爬了200多条评论,就会出现以下信息:
这里写图片描述

这是因为没有登录。这个问题有2种解决方法:
1. 用程序模拟登录豆瓣网并保存cookies。
2. 直接在网页上登录,再通过抓包,获得登录后的cookie值,直接加在我们发送的请求头中。
在这里为了方便,我选择了第二种方法,改造headers:

headers = {
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36',
        'Cookie': '**********************',#请自行修改各自的cookie放入其中
        'Upgrade-Insecure-Requests': '1',
        'Connection':'keep-alive',
        'Upgrade-Insecure-Requests':'1',
        'Host':'movie.douban.com',
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

为了验证可行性,我们将以上程序的start修改成上次访问结束的值220,再次运行程序,发现程序又能继续显示评论了,至此…爬虫的核心部分已经搞定了。下面只要再加上存储数据库,中文分词,词频筛选、统计,绘制词云。那么这个任务就完成了。

三 数据库实装

关于python操作mongodb 使用的是pymongo库,具体的教程需要自行谷歌百度了,这里只介绍具体的用法

#数据库连接
client = MongoClient('localhost', 27017)#链接数据库 参数分别为 ip/端口号
db = client.douban #相当于 use douban 进入到 douban db中
db.authenticate('douban_sa','sa') #db授权,如果没有在启动mongod的时候加上 --auth 可以忽略这一步
collection = db.movie_comments #选中db库中的具体table

#数据库的写入
collection.update({'commenter': comment_dict['commenter']}, {'$setOnInsert': comment_dict}, upsert=True) #简单的说 就是不存在时插入,存在时不更新;
#具体来说:向表中插入comment_dict数据,如果表中已经存在 commenter == comment_dict['commenter'],则不更新;若不存在,则插入这条数据 
#这里'$setOnInsert'和upsert=True是一致的,只有当upsert=True时,才会执行 存在时不更新
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

四 中文分词

在这里我使用了jieba分词,它的官方描述很诱人‘做最好的中文分词’ 哈哈,感觉也不是不可能,就我的使用体验来说,简单,轻巧,可扩展性高。

def get_words_frequency(collection,stop_set):
    '''
    中文分词并返回词频
    :param collection: 数据库的table表
    :param stop_set: 停用词集
    :return:
    '''
    array = collection.find({"movie_name": "春宵苦短,少女前进吧! 夜は短し歩けよ乙女","rating":{"$in":['力荐','推荐']}},{"comments":1})

    num = 0
    words_list = []
    for doc in array:
        num+=1
        # print(doc['comments'])
        comment = doc['comments']
        t_list = jieba.lcut(str(comment),cut_all=False)
        for word in t_list: #当词不在停用词集中出现,并且长度大于1小于5,将之视为课作为词频统计的词
            if word not in stop_set and 5>len(word)>1:
                words_list.append(word)
        words_dict = dict(Counter(words_list))

    return words_dict

def classify_frequenc(word_dict,minment=5):
    '''
    词频筛选,将词频统计中出现次数小于minment次的次剔除出去,获取更精确的词频统计
    :param word_dict:
    :param minment:
    :return:
    '''
    num = minment - 1
    dict = {k:v for k,v in word_dict.items() if v > num}
    return dict


def load_stopwords_set(stopwords_path):
    '''
    载入停词集
    :param stopwords_path: 文本存放路径
    :return:集合
    '''
    stop_set = set()
    with open(str(stopwords_path),'r') as fp:
        line=fp.readline()
        while line is not None and line!= "":
            # print(line.strip())
            stop_set.add(line.strip())
            line = fp.readline()
            # time.sleep(2)
    return stop_set
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

五 词云生成

本着简洁、强大、易用的目的,我选择用wordcloud库来制作词云。

def get_wordcloud(dict,title,save=False):
    '''

    :param dict: 词频字典
    :param title: 标题(电影名)
    :param save: 是否保存到本地
    :return: 
    '''
    # 词云设置
    mask_color_path = "bg_1.png"  # 设置背景图片路径
    font_path = '*****'  # 为matplotlib设置中文字体路径;各操作系统字体路径不同,以mac ox为例:'/Library/Fonts/华文黑体.ttf'
    imgname1 = "color_by_defualut.png"  # 保存的图片名字1(只按照背景图片形状)
    imgname2 = "color_by_img.png"  # 保存的图片名字2(颜色按照背景图片颜色布局生成)
    width = 1000
    height = 860
    margin = 2
    # 设置背景图片
    mask_coloring = imread(mask_color_path)
    # 设置WordCloud属性
    wc = WordCloud(font_path=font_path,  # 设置字体
                   background_color="white",  # 背景颜色
                   max_words=150,  # 词云显示的最大词数
                   mask=mask_coloring,  # 设置背景图片
                   max_font_size=200,  # 字体最大值
                   # random_state=42,
                   width=width, height=height, margin=margin,  # 设置图片默认的大小,但是如果使用背景图片的话,那么保存的图片大小将会按照其大小保存,margin为词语边缘距离
                   )
    # 生成词云
    wc.generate_from_frequencies(dict)

    bg_color = ImageColorGenerator(mask_coloring)
    # 重定义字体颜色
    wc.recolor(color_func=bg_color)
    # 定义自定义字体,文件名从1.b查看系统中文字体中来
    myfont = FontProperties(fname=font_path)
    plt.figure()
    plt.title(title, fontproperties=myfont)
    plt.imshow(wc)
    plt.axis("off")
    plt.show()

    if save is True:#保存到
        wc.to_file(imgname2)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

六 代码合并

import requests,time
from lxml import etree
import time
from all_headers import Headers
from pymongo import MongoClient
import jieba
from collections import Counter
from wordcloud import WordCloud,ImageColorGenerator
from scipy.misc import imread
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties

def get_comments(url,headers,start,max_restart_num,movie_name,collection):
    if start >= 5000:
        print("已爬取5000条评论,结束爬取")
        return

    data = {
        'start': start,
        'limit': 20,
        'sort': 'new_score',
        'status': 'P',
    }
    response = requests.get(url=url, headers=headers, params=data)
    tree = etree.HTML(response.text)
    comment_item = tree.xpath('//div[@id ="comments"]/div[@class="comment-item"]')
    len_comments = len(comment_item)
    if len_comments > 0:
        for i in range(1, len_comments + 1):
            votes = tree.xpath('//div[@id ="comments"]/div[@class="comment-item"][{}]//span[@class="votes"]'.format(i))
            commenters = tree.xpath(
                '//div[@id ="comments"]/div[@class="comment-item"][{}]//span[@class="comment-info"]/a'.format(i))
            ratings = tree.xpath(
                '//div[@id ="comments"]/div[@class="comment-item"][{}]//span[@class="comment-info"]/span[contains(@class,"rating")]/@title'.format(
                    i))
            comments_time = tree.xpath(
                '//div[@id ="comments"]/div[@class="comment-item"][{}]//span[@class="comment-info"]/span[@class="comment-time "]'.format(
                    i))
            comments = tree.xpath(
                '//div[@id ="comments"]/div[@class="comment-item"][{}]/div[@class="comment"]/p'.format(i))

            vote = (votes[0].text.strip())
            commenter = (commenters[0].text.strip())
            try:
                rating = (str(ratings[0]))
            except:
                rating = 'null'
            comment_time = (comments_time[0].text.strip())
            comment = (comments[0].text.strip())

            comment_dict = {}
            comment_dict['vote'] = vote
            comment_dict['commenter'] = commenter
            comment_dict['rating'] = rating
            comment_dict['comments_time'] = comment_time
            comment_dict['comments'] = comment

            comment_dict['movie_name'] = movie_name
            #存入数据库

            print("正在存取第{}条数据".format(start+i))
            print(comment_dict)
            # collection.update({'commenter': comment_dict['commenter']}, {'$setOnInsert': comment_dict}, upsert=True)


        headers['Referer'] = response.url
        start += 20
        data['start'] = start
        time.sleep(5)
        return get_comments(url, headers, start, max_restart_num,movie_name,collection)
    else:
        # print(response.status_code)
        if max_restart_num>0 :
            if response.status_code != 200:
                print("fail to crawl ,waiting 10s to restart continuing crawl...")
                time.sleep(10)
                headers['User-Agent'] = Headers.getUA()
                print(start)
                return get_comments(url, headers, start, max_restart_num-1, movie_name, collection)
            else:
                print("finished crawling")
                return
        else:
            print("max_restart_num has run out")
            with open('log.txt',"a") as fp:
                fp.write('\n{}--latest start:{}'.format(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), start))
            return

def get_words_frequency(collection,stop_set):
    '''
    中文分词并返回词频
    :param collection: 数据库的table表
    :param stop_set: 停用词集
    :return:
    '''
    # array = collection.find({"movie_name": "春宵苦短,少女前进吧! 夜は短し歩けよ乙女","rating":{"$in":['力荐','推荐']}},{"comments":1})
    array = collection.find({"movie_name": "春宵苦短,少女前进吧! 夜は短し歩けよ乙女","$or":[{'rating':'力荐'},{'rating':'推荐'}]},{"comments":1})
    num = 0
    words_list = []
    for doc in array:
        num+=1
        # print(doc['comments'])
        comment = doc['comments']
        t_list = jieba.lcut(str(comment),cut_all=False)
        for word in t_list:
            if word not in stop_set and 5>len(word)>1:
                words_list.append(word)
        words_dict = dict(Counter(words_list))

    return words_dict

def classify_frequenc(word_dict,minment=5):
    num = minment - 1
    dict = {k:v for k,v in word_dict.items() if v > num}
    return dict
def load_stopwords_set(stopwords_path):
    stop_set = set()
    with open(str(stopwords_path),'r') as fp:
        line=fp.readline()
        while line is not None and line!= "":
            # print(line.strip())
            stop_set.add(line.strip())
            line = fp.readline()
            # time.sleep(2)
    return stop_set

def get_wordcloud(dict,title,save=False):
    '''

    :param dict: 词频字典
    :param title: 标题(电影名)
    :param save: 是否保存到本地
    :return:
    '''
    # 词云设置
    mask_color_path = "bg_1.png"  # 设置背景图片路径
    font_path = '/Library/Fonts/华文黑体.ttf'  # 为matplotlib设置中文字体路径没
    imgname1 = "color_by_defualut.png"  # 保存的图片名字1(只按照背景图片形状)
    imgname2 = "color_by_img.png"  # 保存的图片名字2(颜色按照背景图片颜色布局生成)
    width = 1000
    height = 860
    margin = 2
    # 设置背景图片
    mask_coloring = imread(mask_color_path)
    # 设置WordCloud属性
    wc = WordCloud(font_path=font_path,  # 设置字体
                   background_color="white",  # 背景颜色
                   max_words=150,  # 词云显示的最大词数
                   mask=mask_coloring,  # 设置背景图片
                   max_font_size=200,  # 字体最大值
                   # random_state=42,
                   width=width, height=height, margin=margin,  # 设置图片默认的大小,但是如果使用背景图片的话,那么保存的图片大小将会按照其大小保存,margin为词语边缘距离
                   )
    # 生成词云
    wc.generate_from_frequencies(dict)

    bg_color = ImageColorGenerator(mask_coloring)
    # 重定义字体颜色
    wc.recolor(color_func=bg_color)
    # 定义自定义字体,文件名从1.b查看系统中文字体中来
    myfont = FontProperties(fname=font_path)
    plt.figure()
    plt.title(title, fontproperties=myfont)
    plt.imshow(wc)
    plt.axis("off")
    plt.show()

    if save is True:#保存到
        wc.to_file(imgname2)

if __name__ =='__main__':
    base_url = 'https://movie.douban.com/subject/26935251'
    headers = {
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36',
        'Upgrade-Insecure-Requests': '1',
        'Cookie': '******', #各位根据自己账号的Cookie进行填充
        'Connection':'keep-alive',
        'Upgrade-Insecure-Requests':'1',
        'Host':'movie.douban.com',
    }
    start = 0
    response = requests.get(base_url,headers)
    tree = etree.HTML(response.text)
    movie_name = tree.xpath('//div[@id="content"]/h1/span')[0].text.strip()
    # print(movie_name)

    url = base_url+'/comments'

    stopwords_path = 'stopwords.txt'
    stop_set = load_stopwords_set(stopwords_path)

    #数据库连接
    client = MongoClient('localhost', 27017)
    db = client.douban
    db.authenticate('douban_sa','sa')
    collection = db.movie_comments


    # # print(Headers.getUA())
    try:
        #抓取评论 保存到数据库
        get_comments(url, headers,start, 5, movie_name,None)
        #从数据库获取评论 并分好词
        frequency_dict = get_words_frequency(collection,stop_set)
        # 对词频进一步筛选
        cl_dict = classify_frequenc(frequency_dict,5)
        # print(frequency_dict)
        # 根据词频 生成词云
        get_wordcloud(cl_dict,movie_name)
    finally:
        # pass
        client.close()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212

这里的背景图bg_1.png图片如下:
这里写图片描述
最后生成的词云如下:
这里写图片描述

七 小结

哈哈 是不是很简单,但是最终实现出来,还是觉得满满的成就感 2333
github链接:https://github.com/hylusst/requests_douban

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/383821
推荐阅读
相关标签
  

闽ICP备14008679号