当前位置:   article > 正文

人工智能(pytorch)搭建模型12-pytorch搭建BiGRU模型,利用正态分布数据训练该模型

bigru

大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型12-pytorch搭建BiGRU模型,利用正态分布数据训练该模型。本文将介绍一种基于PyTorch的BiGRU模型应用项目。我们将首先解释BiGRU模型的原理,然后使用PyTorch搭建模型,并提供模型代码和数据样例。接下来,我们将加载数据到模型中进行训练,打印损失值与准确率,并在训练完成后进行测试。最后,我们将提供完整的文章目录结构和全套实现代码。

目录

  1. BiGRU模型原理
  2. 使用PyTorch搭建BiGRU模型
  3. 数据样例
  4. 模型训练
  5. 模型测试
  6. 完整代码

1. BiGRU模型原理

BiGRU(双向门控循环单元)是一种改进的循环神经网络(RNN)结构,它由两个独立的GRU层组成,一个沿正向处理序列,另一个沿反向处理序列。这种双向结构使得BiGRU能够捕捉到序列中的长距离依赖关系,从而提高模型的性能。
在这里插入图片描述

GRU(门控循环单元)是一种RNN变体,它通过引入更新门和重置门来解决传统RNN中的梯度消失问题。更新门负责确定何时更新隐藏状态,而重置门负责确定何时允许过去的信息影响当前隐藏状态。

BiGRU模型的数学原理可以用以下公式表示:

首先,对于一个输入序列 X = x 1 x 2 , . . . , x T X = {x_1 x_2, ..., x_T} X=x1x2,...,xT,BiGRU模型的前向计算可以表示为:

h t → = GRU ( h t − 1 → , x t ) \overrightarrow{h_t} = \text{GRU}(\overrightarrow{h_{t-1}}, x_t) ht =GRU(ht1 ,xt)

h t ← = GRU ( h t + 1 ← , x t ) \overleftarrow{h_t} = \text{GRU}(\overleftarrow{h_{t+1}}, x_t) ht =GRU(ht+1 ,xt)

其中, h t → \overrightarrow{h_t} ht h t ← \overleftarrow{h_t} ht 分别表示从左到右和从右到左的隐藏状态, GRU \text{GRU} GRU 表示GRU单元, x t x_t xt 表示输入序列中的第 t t t 个元素。

然后,将两个方向的隐藏状态拼接在一起,得到最终的隐藏状态 h t h_t ht

h t = [ h t → ; h t ← ] h_t = [\overrightarrow{h_t}; \overleftarrow{h_t}] ht=[ht ;ht ]

其中, [ ⋅ ; ⋅ ] [\cdot;\cdot] [;] 表示向量的拼接操作。

最后,将隐藏状态 h t h_t ht 传递给一个全连接层,得到输出 y t y_t yt

y t = softmax ( W h t + b ) y_t = \text{softmax}(W h_t + b) yt=softmax(Wht+b)

其中, W W W b b b 分别表示全连接层的权重和偏置, softmax \text{softmax} softmax 表示 softmax \text{softmax} softmax激活函数。

2. 使用PyTorch搭建BiGRU模型

首先,我们需要导入所需的库:

import torch
import torch.nn as nn
  • 1
  • 2

接下来,我们定义BiGRU模型类:

class BiGRU(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(BiGRU, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size * 2, num_classes)

    def forward(self, x):
        # 初始化隐藏状态
        h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)

        # 双向GRU
        out, _ = self.gru(x, h0)
        out = out[:, -1, :]

        # 全连接层
        out = self.fc(out)
        return out
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

3. 数据样例

为了简化问题,我们将使用一个简单的人造数据集。数据集包含10个样本,每个样本有8个时间步长,每个时间步长有一个特征。标签是一个二分类问题。

# 生成数据样例
import numpy as np

# 均值为1的正态分布随机数
data_0 = np.random.randn(50, 20, 1) + 1
# 均值为-1的正态分布随机数
data_1 = np.random.randn(50, 20, 1) - 1
# 合并为总数据集
data = np.concatenate([data_0, data_1], axis=0)
# 将 labels 修改为对应大小的数组
labels = np.concatenate([np.zeros((50, 1)), np.ones((50, 1))], axis=0)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

4. 模型训练

首先,我们需要将数据转换为PyTorch张量,并将其分为训练集和验证集。

from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(data, labels, test_size=0.2, random_state=42)

X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.long)
X_val = torch.tensor(X_val, dtype=torch.float32)
y_val = torch.tensor(y_val, dtype=torch.long)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

接下来,我们定义训练和验证函数:

def train(model, device, X_train, y_train, optimizer, criterion):
    model.train()
    optimizer.zero_grad()
    output = model(X_train.to(device))
    loss = criterion(output, y_train.squeeze().to(device))
    loss.backward()
    optimizer.step()
    return loss.item()

def validate(model, device, X_val, y_val, criterion):
    model.eval()
    with torch.no_grad():
        output = model(X_val.to(device))
        loss = criterion(output, y_val.squeeze().to(device))
    return loss.item()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

现在,我们可以开始训练模型:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
input_size = 1
hidden_size = 32
num_layers = 1
num_classes = 2
num_epochs = 10
learning_rate = 0.01

model = BiGRU(input_size, hidden_size, num_layers, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

for epoch in range(num_epochs):
    train_loss = train(model, device, X_train, y_train, optimizer, criterion)
    val_loss = validate(model, device, X_val, y_val, criterion)
    print(f"Epoch [{epoch + 1}/{num_epochs}], Train Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

5. 模型测试

在训练完成后,我们可以使用测试数据集评估模型的性能。这里,我们将使用训练过程中的验证数据作为测试数据。

def test(model, device, X_test, y_test):
    model.eval()
    with torch.no_grad():
        output = model(X_test.to(device))
        _, predicted = torch.max(output.data, 1)
        correct = (predicted == y_test.squeeze().to(device)).sum().item()
        accuracy = correct / y_test.size(0)
    return accuracy

test_accuracy = test(model, device, X_val, y_val)
print(f"Test Accuracy: {test_accuracy * 100:.2f}%")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

6. 完整代码

以下是本文中提到的完整代码:

# 导入库
import torch
import torch.nn as nn
import numpy as np
from sklearn.model_selection import train_test_split

# 定义BiGRU模型
class BiGRU(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(BiGRU, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size * 2, num_classes)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
        out, _ = self.gru(x, h0)
        out = out[:, -1, :]
        out = self.fc(out)
        return out

# 生成数据样例
# 均值为1的正态分布随机数
data_0 = np.random.randn(50, 20, 1) + 1
# 均值为-1的正态分布随机数
data_1 = np.random.randn(50, 20, 1) - 1
# 合并为总数据集
data = np.concatenate([data_0, data_1], axis=0)
# 将 labels 修改为对应大小的数组
labels = np.concatenate([np.zeros((50, 1)), np.ones((50, 1))], axis=0)

# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(data, labels, test_size=0.2, random_state=42)
X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.long)
X_val = torch.tensor(X_val, dtype=torch.float32)
y_val = torch.tensor(y_val, dtype=torch.long)

# 定义训练和验证函数
def train(model, device, X_train, y_train, optimizer, criterion):
    model.train()
    optimizer.zero_grad()
    output = model(X_train.to(device))
    loss = criterion(output, y_train.squeeze().to(device))
    loss.backward()
    optimizer.step()
    return loss.item()

def validate(model, device, X_val, y_val, criterion):
    model.eval()
    with torch.no_grad():
        output = model(X_val.to(device))
        loss = criterion(output, y_val.squeeze().to(device))
    return loss.item()

# 训练模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
input_size = 1
hidden_size = 32
num_layers = 1
num_classes = 2
num_epochs = 10
learning_rate = 0.01

model = BiGRU(input_size, hidden_size, num_layers, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

for epoch in range(num_epochs):
    train_loss = train(model, device, X_train, y_train, optimizer, criterion)
    val_loss = validate(model, device, X_val, y_val, criterion)
    print(f"Epoch [{epoch + 1}/{num_epochs}], Train Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}")

# 测试模型
def test(model, device, X_test, y_test):
    model.eval()
    with torch.no_grad():
        output = model(X_test.to(device))
        _, predicted = torch.max(output.data, 1)
        correct = (predicted == y_test.squeeze().to(device)).sum().item()
        accuracy = correct / y_test.size(0)
    return accuracy

test_accuracy = test(model, device, X_val, y_val)
print(f"Test Accuracy: {test_accuracy * 100:.2f}%")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

运行结果:

Epoch [1/10], Train Loss: 0.7157, Validation Loss: 0.6330
Epoch [2/10], Train Loss: 0.6215, Validation Loss: 0.5666
Epoch [3/10], Train Loss: 0.5390, Validation Loss: 0.4980
Epoch [4/10], Train Loss: 0.4613, Validation Loss: 0.4214
Epoch [5/10], Train Loss: 0.3825, Validation Loss: 0.3335
Epoch [6/10], Train Loss: 0.2987, Validation Loss: 0.2357
Epoch [7/10], Train Loss: 0.2096, Validation Loss: 0.1381
Epoch [8/10], Train Loss: 0.1230, Validation Loss: 0.0644
Epoch [9/10], Train Loss: 0.0581, Validation Loss: 0.0273
Epoch [10/10], Train Loss: 0.0252, Validation Loss: 0.0125
Test Accuracy: 100.00%
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

本文介绍了一个基于PyTorch的BiGRU模型应用项目的完整实现。我们详细介绍了BiGRU模型的原理,并使用PyTorch搭建了模型。我们还提供了模型代码和数据样例,并展示了如何加载数据到模型中进行训练和测试。希望能帮助大家理解和实现BiGRU模型。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/384317
推荐阅读
相关标签
  

闽ICP备14008679号