当前位置:   article > 正文

选择类排序法_简单选择排序最坏情况

简单选择排序最坏情况

选择类排序法

(1)简单选择排序法,最坏情况需要n(n-1)/2次比较;

设所排序序列的记录个数为n。i取1,2,…,n-1,从所有n-i+1个记录(Ri,Ri+1,…,Rn)中找出排序码最小的记录,与第i个记录交换。执行n-1趟 后就完成了记录序列的排序。该排序是不稳定排序。


//简单选择排序法
public class SimpleSelectSort {
     static int i;
     static int temp;
     public static void selectSort(int array[]) {
        for (i = 0; i < array.length; i++) {
        int k = i;  //记录当前位置
        for (int j = i + 1; j < array.length; j++) {
        if (array[j] < array[k]) {   //找出最小的数,并用k指向最小数的位置
        k = j;
        }
     }
     //交换最小数array[k]与第i位上的数
     if (k != i) {
        temp = array[i];
        array[i] = array[k];
        array[k] = temp; 
        }
    }  
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

(2)堆排序法,最坏情况需要O(nlog2n)次比较。

相比以上几种(除希尔排序法外),堆排序法的时间复杂度最小。
堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏、最好、平均时间复杂度均为O(nlog2n),它也是不稳定排序。首先简单了解下堆结构。
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:
在这里插入图片描述
同时,对堆中的结点按层进行编号,将这种逻辑结构映射到数组中可得:
在这里插入图片描述
该数组从逻辑上讲就是一个堆结构,用简单的公式来描述堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]
堆排序基本思想及步骤
堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。
a.假设给定无序序列结构如下
在这里插入图片描述
此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。
在这里插入图片描述
这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。
在这里插入图片描述
此时,我们就将一个无需序列构造成了一个大顶堆。
步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

a.将堆顶元素9和末尾元素4进行交换
在这里插入图片描述
b.重新调整结构,使其继续满足堆定义
在这里插入图片描述
c.再将堆顶元素8与末尾元素5进行交换,得到第二大元素8
在这里插入图片描述
后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
在这里插入图片描述
再简单总结下堆排序的基本思路:
a.将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
b.将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
堆排序是一种选择排序,整体主要由构建初始堆+交换堆顶元素和末尾元素并重建堆两部分组成。其中构建初始堆经推导复杂度为O(n),在交换并重建堆的过程中,需交换n-1次,而重建堆的过程中,根据完全二叉树的性质,[log2(n-1),log2(n-2)…1]逐步递减,近似为nlog2n。所以堆排序时间复杂度一般认为就是O(nlog2n)级。


//堆排序
import java.util.Arrays;

  public class HeapSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void sort(int []arr){
        for(int i=arr.length/2-1;i>=0;i--){   //1.构建大顶堆
            //从第一个非叶子结点从下至上,从右至左调整结构           
             adjustHeap(arr,i,arr.length); 
             }
        for(int j=arr.length-1;j>0;j--){//2.调整堆结构+交换堆顶元素与末尾元素
            swap(arr,0,j);//将堆顶元素与末尾元素进行交换
            adjustHeap(arr,0,j);//重新对堆进行调整
             }
    }
    //调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
    public static void adjustHeap(int []arr,int i,int length){
        int temp = arr[i];//先取出当前元素i
        for(int k=i*2+1;k<length;k=k*2+1){//从i结点的左子结点开始,也就是2i+1处开始
          if(k+1<length && arr[k]<arr[k+1]){//如果左子结点小于右子结点,k指向右子结点
                k++;
            }
            if(arr[k] >temp){//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
                arr[i] = arr[k];
                i = k;
            }else{
                break } }
        arr[i] = temp;//将temp值放到最终的位置    
        }
   //交换元素
   public static void swap(int []arr,int a ,int b){
       int temp=arr[a];
       arr[a] = arr[b];
       arr[b] = temp; 
      } 
    }
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/411857
推荐阅读
相关标签
  

闽ICP备14008679号