赞
踩
Triton部署YOLOV5笔记(一)
Triton部署YOLOV5笔记(二)
triton部署yolov5笔记(三)
triton部署yolov5笔记(四)
我不会用 Triton 系列:Python Backend 的使用
官方github[triton-inference-server]
人脸识别例程
目录结构
server/
└── hat_model # 模型名字,需要和 config.txt 中的名字对上
├── 1 # 模型版本号
│ └── model.onnx # 这个是你自己训练好保存的模型
├── config.pbtxt # 模型配置文件
custom_model # 模型名字,需要和 config.txt 中的名字对上
├── 1 # 模型版本号
│ └── model.py # python backend服务端代码
├── config.pbtxt # 模型配置文件
client.py # 客户端脚本,可以不放在这里
0.jpg # 测试图片
服务端配置
输入是一张图片,输出是一张图片
name: "custom_model" backend: "python" input [ { name: "input0" data_type: TYPE_FP32 dims: [-1, -1, 3] } ] output [ { name: "output0" data_type: TYPE_FP32 dims: [-1, -1, 3 ] } ]
服务端
model.py 中需要提供三个接口:initialize, execute, finalize。其中 initialize 和 finalize 是模型实例初始化、模型实例清理的时候会调用的。如果有 n 个模型实例,那么会调用 n 次这两个函数。
#model.py import json import numpy as np import triton_python_backend_utils as pb_utils import cv2 import torch import torchvision import random import math from torch.utils.dlpack import from_dlpack class TritonPythonModel: def initialize(self, args): self.model_config = model_config = json.loads(args['model_config']) output0_config = pb_utils.get_output_config_by_name(model_config, "output0") self.output0_dtype = pb_utils.triton_string_to_numpy(output0_config['data_type']) def execute(self, requests): output0_dtype = self.output0_dtype responses = [] for request in requests: in_0 = pb_utils.get_input_tensor_by_name(request, 'input0') img = self._recognize(in_0.as_numpy()) out_tensor_0 = pb_utils.Tensor('output0', img.astype(output0_dtype)) # out_tensor_0, out_tensor_1, out_tensor_2 = self._recognize(in_0.as_numpy()) inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor_0]) # inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor_0,out_tensor_1,out_tensor_2]) responses.append(inference_response) return responses def finalize(self): print('Cleaning up...') # def _recognize(self,draw): # return draw def _recognize(self,draw): # 超参数的设置 img_size=(640,640) #图片缩放大小 conf_thres=0.25 #置信度阈值 iou_thres=0.45 #iou阈值 class_num=2 #类别数 stride=[8,16,32] anchor_list= [[10,13, 16,30, 33,23],[30,61, 62,45, 59,119], [116,90, 156,198, 373,326]] anchor = np.array(anchor_list).astype(np.float).reshape(3,-1,2) area = img_size[0] * img_size[1] size = [int(area / stride[0] ** 2), int(area / stride[1] ** 2), int(area / stride[2] ** 2)] feature = [[int(j / stride[i]) for j in img_size] for i in range(3)] draw = draw.copy() # print(draw) # draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB) # height, width, _ = np.shape(draw) # src_size = [height, width] src_size = draw.shape[:2] # 图片填充并进行归一化 img = self.letterbox(draw,img_size,stride=32)[0] img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) # 归一化 img=img.astype(dtype=np.float32) img/=255.0 # 维度扩张 img=np.expand_dims(img,axis=0).astype(np.float32) # print(img.shape) inference_request = pb_utils.InferenceRequest( model_name='hat_model', requested_output_names=['output0','output1','output2'], inputs=[pb_utils.Tensor('images', img)] ) inference_response = inference_request.exec() out_tensor_0 = self.pb_tensor_to_numpy(pb_utils.get_output_tensor_by_name(inference_response, 'output0'))[0] out_tensor_1 = self.pb_tensor_to_numpy(pb_utils.get_output_tensor_by_name(inference_response, 'output1'))[0] out_tensor_2 = self.pb_tensor_to_numpy(pb_utils.get_output_tensor_by_name(inference_response, 'output2'))[0] output = [out_tensor_0,out_tensor_1,out_tensor_2] #提取出特征 y = [] y.append(torch.tensor(output[0].reshape(-1,size[0]*3,5+class_num)).sigmoid()) y.append(torch.tensor(output[1].reshape(-1,size[1]*3,5+class_num)).sigmoid()) y.append(torch.tensor(output[2].reshape(-1,size[2]*3,5+class_num)).sigmoid()) grid = [] for k, f in enumerate(feature): grid.append([[i, j] for j in range(f[0]) for i in range(f[1])]) z = [] for i in range(3): src = y[i] xy = src[..., 0:2] * 2. - 0.5 wh = (src[..., 2:4] * 2) ** 2 dst_xy = [] dst_wh = [] for j in range(3): dst_xy.append((xy[:, j * size[i]:(j + 1) * size[i], :] + torch.tensor(grid[i])) * stride[i]) dst_wh.append(wh[:, j * size[i]:(j + 1) * size[i], :] * anchor[i][j]) src[..., 0:2] = torch.from_numpy(np.concatenate((dst_xy[0], dst_xy[1], dst_xy[2]), axis=1)) src[..., 2:4] = torch.from_numpy(np.concatenate((dst_wh[0], dst_wh[1], dst_wh[2]), axis=1)) z.append(src.view(1, -1, 5+class_num)) results = torch.cat(z, 1) results = self.nms(results, conf_thres, iou_thres) #映射到原始图像 img_shape=img.shape[2:] # print(img_size) for det in results: # detections per image if det is not None and len(det): det[:, :4] = self.scale_coords(img_shape, det[:, :4],src_size).round() if det is not None and len(det): draw = self.draw(draw, det) return draw def letterbox(self, img, new_shape=(640, 640), color=(114, 114, 114), auto=False, scaleFill=False, scaleup=True, stride=32): '''图片归一化''' # Resize and pad image while meeting stride-multiple constraints shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return img, ratio, (dw, dh) def pb_tensor_to_numpy(self,pb_tensor): '''pb_tensor转换为numpy格式''' if pb_tensor.is_cpu(): return pb_tensor.as_numpy() else: pytorch_tensor = from_dlpack(pb_tensor.to_dlpack()) return pytorch_tensor.cpu().numpy() def xywh2xyxy(self,x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def nms(self,prediction, conf_thres=0.1, iou_thres=0.6, agnostic=False): if prediction.dtype is torch.float16: prediction = prediction.float() # to FP32 xc = prediction[..., 4] > conf_thres # candidates min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height max_det = 300 # maximum number of detections per image output = [None] * prediction.shape[0] for xi, x in enumerate(prediction): # image index, image inference x = x[xc[xi]] # confidence if not x.shape[0]: continue x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf box = self.xywh2xyxy(x[:, :4]) conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((torch.tensor(box), conf, j.float()), 1)[conf.view(-1) > conf_thres] n = x.shape[0] # number of boxes if not n: continue c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) if i.shape[0] > max_det: # limit detections i = i[:max_det] output[xi] = x[i] return output def clip_coords(self,boxes, img_shape): '''查看是否越界''' # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def scale_coords(self,img1_shape, coords, img0_shape, ratio_pad=None): ''' 坐标对应到原始图像上,反操作:减去pad,除以最小缩放比例 :param img1_shape: 输入尺寸 :param coords: 输入坐标 :param img0_shape: 映射的尺寸 :param ratio_pad: :return: ''' # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new,计算缩放比率 pad = (img1_shape[1] - img0_shape[1] * gain) / 2, ( img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding ,计算扩充的尺寸 else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding,减去x方向上的扩充 coords[:, [1, 3]] -= pad[1] # y padding,减去y方向上的扩充 coords[:, :4] /= gain # 将box坐标对应到原始图像上 self.clip_coords(coords, img0_shape) # 边界检查 return coords def sigmoid(self,x): return 1 / (1 + np.exp(-x)) def plot_one_box(self,x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) return img def draw(self,img, boxinfo): colors = [[0, 0, 255],[0,255,0]] class_id =['hat','no_hat'] for *xyxy, conf, cls in boxinfo: label = '%s %.2f' % (class_id[int(cls)], conf) # print('xyxy: ', xyxy) self.plot_one_box(xyxy, img, label=label, color=colors[int(cls)], line_thickness=1) return img
客户端
接下来,写一个脚本调用一下服务。
#client.py import numpy as np import cv2 import tritonclient.http as httpclient import time if __name__ == '__main__': triton_client = httpclient.InferenceServerClient(url='192.168.188.108:8000') img = cv2.imread('0.jpg').astype(np.float32) inputs = [] inputs.append(httpclient.InferInput('input0', [*img.shape], "FP32")) # binary_data 默认是 True, 表示传输的时候使用二进制格式, 否则使用 JSON 文本(大小不一样) inputs[0].set_data_from_numpy(img, binary_data=True) outputs = [] outputs.append(httpclient.InferRequestedOutput('output0', binary_data=False)) t1 = time.time() results = triton_client.infer('custom_model', inputs=inputs, outputs=outputs) t2 = time.time() print('inference time is: {}ms'.format(1000 * (t2 - t1))) output_data0 = results.as_numpy('output0') print(img.shape) print(output_data0.shape) cv2.imwrite('out.jpg', output_data0.astype(np.uint8))
输出结果,效果不太好,不过跑通了。
注意事项
需要配置python环境
进入docker容器根目录
docker exec xxxxxxx /bin/bash
或者直接在docker客户端,进入容器,运行终端
可以看到models目录,models目录下即为模型目录,映射到本地server下
安装model.py所需要的包
pip3 install opencv-python-headless
pip3 install torch torchvision torchaudio
清华镜像源地址
pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple
也可以根据官方的教程,Packaging the Conda Environment具体实现过程我没有试,大家可以试试
在创建环境之前运行
export PYTHONNOUSERSITE=True
创建一个虚拟环境,安装服务端需要的包
conda create -n triton python=3.8
pip install opencv-python # conda 安装不了,用 pip,如果有问题安装opencv-python-headless
pip3 install torch torchvision torchaudio
# 清华镜像源
# pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple
conda install conda-pack
conda-pack # 运行打包程序,将会打包到运行的目录下面
如果需要,安装opencv的依赖
apt update
apt install ffmpeg libsm6 libxext6 -y --fix-missing # 安装 opencv 的依赖, -y 表示 yes
将打包的triton.tar.gz文件放到cuetom_model路径下
具体路径如下
. ├── deploy │ ├── custom_model │ │ ├── 1 │ │ │ ├── model.py │ │ │ └── __pycache__ │ │ │ ├── hat_utils.cpython-38.pyc │ │ │ └── model.cpython-38.pyc │ │ ├── config.pbtxt │ │ └── triton.tar.gz │ ├── model_0 │ │ ├── 1 │ │ │ └── model.onnx │ │ └── config.pbtxt │ └── model_1 │ ├── 1 │ │ └── model.onnx │ └── config.pbtxt └── images ├── input_img │ └── 4.jpg └── output_img └── 111.png
修改配置文件
最后一行加上
parameters: {
key: "EXECUTION_ENV_PATH",
value: {string_value: "$$TRITON_MODEL_DIRECTORY/triton.tar.gz"}
}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。