赞
踩
在当今的数字世界中,RSA算法无疑是安全性基石之一。自1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)提出以来,它一直在保障我们的数据安全方面发挥着重要作用。
RSA算法是一种非对称加密算法,即它使用两个密钥:一个是公钥,另一个是私钥。公钥可以公开分享,而私钥必须保密。公钥用于加密数据,而私钥用于解密数据。除此之外,RSA算法还可以用于生成数字签名,以验证数据的完整性和来源。
密钥生成:RSA算法首先需要生成一对密钥。这通过选择两个大质数p和q,并计算他们的乘积n=pq。选择这两个质数时,需要保证它们乘积的因数除了1和它们自身外,没有其他因数。然后计算欧拉函数φ(n)=(p-1)(q-1)。接着,选择一个整数e,使得1<e<φ(n),且e和φ(n)互质。最后,计算e关于φ(n)的模反元素d,即满足e*d mod φ(n) = 1。公钥为(n,e),私钥为(n,d)。
加密:使用公钥(n,e)对数据进行加密。首先,将明文数据转化为一个整数m,满足0<=m<n。然后,计算密文c,即c=m^e mod n。
解密:使用私钥(n,d)对密文进行解密。首先,计算明文m,即m=c^d mod n。
RSA算法的安全性
RSA算法的安全性基于大数分解的难度。在理论上是安全的,但随着量子计算机的发展,RSA算法可能在未来不再安全。因此,为了保持安全性,建议使用足够大的密钥长度(至少2048位)。
以下是一个简单的Java代码示例,展示了如何使用RSA算法进行加密和解密:
import java.security.KeyPair; import java.security.KeyPairGenerator; import java.security.PrivateKey; import java.security.PublicKey; import java.security.SecureRandom; import javax.crypto.Cipher; public class RSAExample { public static void main(String[] args) throws Exception { try { // 生成RSA密钥对 KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA"); keyPairGenerator.initialize(2048, new SecureRandom()); KeyPair keyPair = keyPairGenerator.generateKeyPair(); PrivateKey privateKey = keyPair.getPrivate(); PublicKey publicKey = keyPair.getPublic(); System.out.println("priveteKey:" + Base64.getEncoder().encode(privateKey.getEncoded())); System.out.println("publicKey:" + Base64.getEncoder().encode(publicKey.getEncoded())); // 加密明文 String plaintext = "KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance(\"RSA\");"; Cipher encryptCipher = Cipher.getInstance("RSA"); encryptCipher.init(Cipher.ENCRYPT_MODE, publicKey); byte[] ciphertext = encryptCipher.doFinal(plaintext.getBytes()); // 解密密文 Cipher decryptCipher = Cipher.getInstance("RSA"); decryptCipher.init(Cipher.DECRYPT_MODE, privateKey); byte[] plaintextBytes = decryptCipher.doFinal(ciphertext); String decryptedText = new String(plaintextBytes); System.out.println("plaintext: " + plaintext); System.out.println("encryptCipher: " + ciphertext.length + " size"); System.out.println("encryptCipherText: " + new String(ciphertext, StandardCharsets.UTF_8)); System.out.println("decryptCipherText: " + decryptedText); } catch (Exception e) { e.printStackTrace(); } } }
输出结果:
这段代码首先生成一个RSA密钥对,然后使用公钥加密一个明文字符串,最后使用私钥解密它。这个简单的例子展示了RSA的基本工作原理。然而,在实际应用中,还需要考虑其他安全性因素,如密钥管理、安全协议等。
RSA是一种非对称加密算法,它使用一对密钥,其中一个公开用于加密,另一个保密用于解密。下面是RSA算法的计算过程:
加密过程:
解密过程:
package com.example.demo; import java.io.UnsupportedEncodingException; import java.math.BigInteger; import java.util.LinkedList; import java.util.List; public class DemoMain { public static void main(String[] args) throws UnsupportedEncodingException { // 选择两个质数p和q BigInteger p = new BigInteger("11"); BigInteger q = new BigInteger("19"); // 计算n和φ(n) BigInteger n = p.multiply(q); BigInteger phi = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE)); System.out.println("n:" + n); System.out.println("phi:" + phi); // 选择一个公开的指数e,并计算模反元素d BigInteger e = new BigInteger("7"); BigInteger d = e.modInverse(phi); // 公钥和私钥 BigInteger publicKey = e; BigInteger privateKey = d; System.out.println("公钥:" + publicKey); System.out.println("私钥:" + privateKey); // 明文消息 String plaintext = "kexuexiong"; //一、私钥加密,公钥解密,模拟服务器发消息给客户端 System.out.println("-------------------------------------私钥加密,公钥解密,模拟服务器发消息给客户端---------------------------------"); processing(n, e, d, plaintext); //二、公钥加密,私钥解密,模拟客户端发消息给服务器 System.out.println("-------------------------------------公钥加密,私钥解密,模拟客户端发消息给服务器---------------------------------"); plaintext = "hello ,rose and jeck!!"; processing(n, d, e, plaintext); } private static void processing(BigInteger n, BigInteger e, BigInteger d, String plaintext) throws UnsupportedEncodingException { System.out.println("需要加密的明文:"+plaintext); // 加密过程 byte[] bytes = plaintext.getBytes("utf-8"); List<String> plaintextList = new LinkedList<>(); for (Byte aByte : bytes) { BigInteger message = new BigInteger(aByte.toString()); BigInteger ciphertext = message.modPow(d, n);//加密之后的值可能超过Byte的最大值,所以直接用string保存 plaintextList.add(ciphertext.toString()); } System.out.println("加密后队列:"+plaintextList); // 解密过程 List<Byte> cipherList = new LinkedList<>(); for (String ciphertext : plaintextList) { BigInteger decryptedMessage = new BigInteger(ciphertext).modPow(e, n); cipherList.add(decryptedMessage.byteValue()); } System.out.println("解密后队列信息: " + cipherList); byte[] bytesMsg = new byte[cipherList.size()]; for (int i = 0; i < cipherList.size(); i++) { bytesMsg[i] = cipherList.get(i); } System.out.println("解密后信息:" + new String(bytesMsg, "utf-8")); } }
输出结果:
n:209 phi:180 公钥:7 私钥:103 -------------------------------------私钥加密,公钥解密,模拟服务器发消息给客户端--------------------------------- 需要加密的明文:kexuexiong 加密后队列:[50, 118, 175, 90, 118, 175, 51, 100, 143, 141] 解密后队列信息: [107, 101, 120, 117, 101, 120, 105, 111, 110, 103] 解密后信息:kexuexiong -------------------------------------公钥加密,私钥解密,模拟客户端发消息给服务器--------------------------------- 需要加密的明文:hello ,rose and jeck!! 加密后队列:[80, 161, 48, 48, 188, 10, 66, 38, 188, 58, 161, 10, 147, 165, 111, 10, 182, 161, 44, 145, 22, 22] 解密后队列信息: [104, 101, 108, 108, 111, 32, 44, 114, 111, 115, 101, 32, 97, 110, 100, 32, 106, 101, 99, 107, 33, 33] 解密后信息:hello ,rose and jeck!! Process finished with exit code 0
RSAKeyPairGenerator.java
public KeyPair generateKeyPair() { BigInteger e = publicExponent; BigInteger minValue = (useNew? getSqrt(keySize) : ZERO); int lp = (keySize + 1) >> 1; int lq = keySize - lp; int pqDiffSize = lp - 100; while (true) { BigInteger p = null; BigInteger q = null; int i = 0; while (i++ < 10*lp) { BigInteger tmpP = BigInteger.probablePrime(lp, random); if ((!useNew || tmpP.compareTo(minValue) == 1) && isRelativePrime(e, tmpP.subtract(ONE))) { p = tmpP; break; } } if (p == null) { throw new ProviderException("Cannot find prime P"); } i = 0; while (i++ < 20*lq) { BigInteger tmpQ = BigInteger.probablePrime(lq, random); if ((!useNew || tmpQ.compareTo(minValue) == 1) && (p.subtract(tmpQ).abs().compareTo (TWO.pow(pqDiffSize)) == 1) && isRelativePrime(e, tmpQ.subtract(ONE))) { q = tmpQ; break; } } if (q == null) { throw new ProviderException("Cannot find prime Q"); } BigInteger n = p.multiply(q); if (n.bitLength() != keySize) { // regenerate P, Q if n is not the right length; should // never happen for the new case but check it anyway continue; } KeyPair kp = createKeyPair(type, keyParams, n, e, p, q); // done, return the generated keypair; if (kp != null) return kp; } }
RSAKeyPairGenerator.java
private static KeyPair createKeyPair(KeyType type, AlgorithmParameterSpec keyParams, BigInteger n, BigInteger e, BigInteger p, BigInteger q) { // phi = (p - 1) * (q - 1) must be relative prime to e // otherwise RSA just won't work ;-) BigInteger p1 = p.subtract(ONE); BigInteger q1 = q.subtract(ONE); BigInteger phi = p1.multiply(q1);//欧拉函数 BigInteger gcd = p1.gcd(q1);//取互质数 BigInteger lcm = (gcd.equals(ONE)? phi : phi.divide(gcd)); BigInteger d = e.modInverse(lcm); if (d.compareTo(TWO.pow(p.bitLength())) != 1) { return null; } // 1st prime exponent pe = d mod (p - 1) BigInteger pe = d.mod(p1); // 2nd prime exponent qe = d mod (q - 1) BigInteger qe = d.mod(q1); // crt coefficient coeff is the inverse of q mod p BigInteger coeff = q.modInverse(p); try { PublicKey publicKey = new RSAPublicKeyImpl(type, keyParams, n, e); PrivateKey privateKey = new RSAPrivateCrtKeyImpl( type, keyParams, n, e, d, p, q, pe, qe, coeff); return new KeyPair(publicKey, privateKey); } catch (InvalidKeyException exc) { // invalid key exception only thrown for keys < 512 bit, // will not happen here throw new RuntimeException(exc); } }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。