当前位置:   article > 正文

基于Spark MLlib+ALS协同过滤算法实现的电影推荐系统,采用MovieLens数据集进行分析建模_用als算法完成数据建模

用als算法完成数据建模

项目源码地址:https://download.csdn.net/download/lijunhcn/88463161

本项目使用了MovieLens数据集进行建模分析,采用ALS算法,使用spark MLlib库,包含程序源码,数据集文件,分析结果等。

  项目数据集:

(1)ratings.csv

数据格式:userId,movieId,rating,timestamp

(2)movies.csv

数据格式:movieId,title,genres
 

result 结果说明

数据格式:userId, [(movieId, rating)]

userId:用户ID

movieId:电影ID

rating:推荐度

部分分析结果展示:

12,[(u'Anatomy (Anatomie) (2000)', 7.460098354696925), (u'Caveman (1981)', 7.460098354696925), (u'Prisoner of the Mountains (Kavkazsky plennik) (1996)', 7.460098354696925), (u'Grass Is Greener, The (1960)', 7.460098354696925), (u'Two Ninas (1999)', 7.460098354696925), (u'Storefront Hitchcock (1997)', 7.460098354696925), (u'Game Plan, The (2007)', 6.851993756650927), (u'Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 5.953119755862417), (u'Maelstr\xf6m (2000)', 5.043983016906566), (u"Taste of Cherry (Ta'm e guilass) (1997)", 5.043983016906566)]
13,[(u'Anatomy (Anatomie) (2000)', 9.717292761785984), (u'Caveman (1981)', 9.717292761785984), (u'Prisoner of the Mountains (Kavkazsky plennik) (1996)', 9.717292761785984), (u'Grass Is Greener, The (1960)', 9.717292761785984), (u'Two Ninas (1999)', 9.717292761785984), (u'Storefront Hitchcock (1997)', 9.717292761785984), (u'Game Plan, The (2007)', 8.92519457111257), (u'Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 7.7543491738638295), (u'Maelstr\xf6m (2000)', 6.570135852149747), (u"Taste of Cherry (Ta'm e guilass) (1997)", 6.570135852149747)]
14,[(u'Anatomy (Anatomie) (2000)', 9.058698884794694), (u'Caveman (1981)', 9.058698884794694), (u'Prisoner of the Mountains (Kavkazsky plennik) (1996)', 9.058698884794694), (u'Grass Is Greener, The (1960)', 9.058698884794694), (u'Two Ninas (1999)', 9.058698884794694), (u'Storefront Hitchcock (1997)', 9.058698884794694), (u'Game Plan, The (2007)', 8.320285504401454), (u'Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 7.2287946792989715), (u'Maelstr\xf6m (2000)', 6.124841946809852), (u"Taste of Cherry (Ta'm e guilass) (1997)", 6.124841946809852)]
45,[(u'Anatomy (Anatomie) (2000)', 9.230162364777584), (u'Caveman (1981)', 9.230162364777584), (u'Prisoner of the Mountains (Kavkazsky plennik) (1996)', 9.230162364777584), (u'Grass Is Greener, The (1960)', 9.230162364777584), (u'Two Ninas (1999)', 9.230162364777584), (u'Storefront Hitchcock (1997)', 9.230162364777584), (u'Game Plan, The (2007)', 8.477772261073596), (u'Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 7.365621646124737), (u'Maelstr\xf6m (2000)', 6.240773244218133), (u"Taste of Cherry (Ta'm e guilass) (1997)", 6.240773244218133)]
46,[(u'Anatomy (Anatomie) (2000)', 13.75480763037831), (u'Caveman (1981)', 13.75480763037831), (u'Prisoner of the Mountains (Kavkazsky plennik) (1996)', 13.75480763037831), (u'Grass Is Greener, The (1960)', 13.75480763037831), (u'Two Ninas (1999)', 13.75480763037831), (u'Storefront Hitchcock (1997)', 13.75480763037831), (u'Game Plan, The (2007)', 12.633594294095019), (u'Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 10.976265077113567), (u'Maelstr\xf6m (2000)', 9.300013590941944), (u"Taste of Cherry (Ta'm e guilass) (1997)", 9.300013590941944)]
47,[(u'Anatomy (Anatomie) (2000)', 11.416261420944465), (u'Caveman (1981)', 11.416261420944465), (u'Prisoner of the Mountains (Kavkazsky plennik) (1996)', 11.416261420944465), (u'Grass Is Greener, The (1960)', 11.416261420944465), (u'Two Ninas (1999)', 11.416261420944465), (u'Storefront Hitchcock (1997)', 11.416261420944465), (u'Game Plan, The (2007)', 10.485673011449762), (u'Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 9.110117343201637), (u'Maelstr\xf6m (2000)', 7.718856506436623), (u"Taste of Cherry (Ta'm e guilass) (1997)", 7.718856506436623)]
89,[(u'Anatomy (Anatomie) (2000)', 12.59224858594871), (u'Caveman (1981)', 12.59224858594871), (u'Prisoner of the Mountains (Kavkazsky plennik) (1996)', 12.59224858594871), (u'Grass Is Greener, The (1960)', 12.59224858594871), (u'Two Ninas (1999)', 12.59224858594871), (u'Storefront Hitchcock (1997)', 12.59224858594871), (u'Game Plan, The (2007)', 11.565800421222775), (u'Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 10.048548995408964), (u'Maelstr\xf6m (2000)', 8.513974614316112), (u"Taste of Cherry (Ta'm e guilass) (1997)", 8.513974614316112)]
90,[(u'Anatomy (Anatomie) (2000)', 10.440899867808184), (u'Caveman (1981)', 10.440899867808184), (u'Prisoner of the Mountains (Kavkazsky plennik) (1996)', 10.440899867808184), (u'Grass Is Greener, The (1960)', 10.440899867808184), (u'Two Ninas (1999)', 10.440899867808184), (u'Storefront Hitchcock (1997)', 10.440899867808184), (u'Game Plan, The (2007)', 9.589817359847075), (u'Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 8.331783887661004), (u'Maelstr\xf6m (2000)', 7.059387036269982), (u"Taste of Cherry (Ta'm e guilass) (1997)", 7.059387036269982)]
91,[(u'Anatomy (Anatomie) (2000)', 12.08746098604911), (u'Caveman (1981)', 12.08746098604911), (u'Prisoner of the Mountains (Kavkazsky plennik) (1996)', 12.08746098604911), (u'Grass Is Greener, The (1960)', 12.08746098604911), (u'Two Ninas (1999)', 12.08746098604911), (u'Storefront Hitchcock (1997)', 12.08746098604911), (u'Game Plan, The (2007)', 11.102160222596012), (u'Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 9.645731111434998), (u'Maelstr\xf6m (2000)', 8.172673473234568), (u"Taste of Cherry (Ta'm e guilass) (1997)", 8.172673473234568)]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

 

 部分代码展示:

# coding: utf-8
import sys
from os.path import join
 
from pyspark.sql import SparkSession
from pyspark.sql import Row
from pyspark.mllib.recommendation import ALS
 
reload(sys)
sys.setdefaultencoding("utf-8")
 
 
def train_model(training, num_iterations=10, rank=1, lambda_=0.01):
    return ALS.train(training.rdd, iterations=num_iterations, rank=rank, lambda_=lambda_, seed=0)
 
 
def tuning_model(training, test):
    testing = test.select(["userId", "movieId"]).rdd
 
    min_mse = 1e6
    best_rank = 10
    best_lambda = 1.0
    num_iterations = 10
    for rank in range(1, 5):
        for lambda_f in range(1, 5):
            lambda_ = lambda_f * 0.01
            asl = train_model(training, num_iterations, rank, lambda_)
            predictions = asl.predictAll(testing).toDF(["userId", "movieId", "p_rating"])
            rates_and_preds = test \
                .join(predictions,[test.userId == predictions.userId, test.movieId == predictions.movieId]) \
                .drop(test.userId).drop(test.movieId)
 
            MSE = rates_and_preds.rdd.map(lambda r: (r.rating - r.p_rating) ** 2) \
                      .reduce(lambda x, y: x + y)/rates_and_preds.count()
            print "rank = %s, lambda = %s, Mean Squared Error = %s" % (rank, lambda_, MSE)
 
            if MSE < min_mse:
                min_mse = MSE
                best_rank = rank
                best_lambda = lambda_
 
    print "*" * 80
    print "The best params are: rank = %s, lambda = %s, Mean Squared Error = %s" % \
          (best_rank, best_lambda, min_mse)
    print "*" * 80
    return train_model(training, num_iterations, best_rank, best_lambda)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

说明:当前文章或代码如侵犯了您的权益,请私信作者删除!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/449696
推荐阅读
相关标签
  

闽ICP备14008679号