赞
踩
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
@Time : 2020/9/13 16:53
@Author : kingback
@Site :
@File : SEPM.py
@Software: PyCharm
'''
'''
the install order is :
因为一些函数包需要一些依赖,所以建议大家按照如下步骤安装操作
0. All the package I use the commond "python setup.py install" to install to our machine.
Maybe we also need to install other packages like : cython ,numba ,scipy ,matplotlib ,numpy ...
0.说明,以下所有的安装包最好都再对应的github链接下载其源码,然后cmd进入到其对应的文件见,执行python setup.py install命令来进行安装
1. install the gammatone from : https://github.com/detly/gammatone
1. 第一步,先安装这个包,下载地址如上,下载好后进入文件夹执行命令python setup.py install
2.install the SRMRpy from : https://github.com/jfsantos/SRMRpy
2.这是需要安装的第二个包,因为这些包都是有依赖关系的,所以建议大家还是按照这个顺序来
3.install the python-pesq from : https://github.com/vBaiCai/python-pesq
3.这是第三个包
4.install the pystoi from : https://github.com/mpariente/pystoi
4.这是第四个
5.install the pyseqm from : https://github.com/schmiph2/pysepm
5.这是第五个
'''
如果大家链接github速度较慢,可以访问那五个安装包,提取码:r809
环境搭建的话,博主是使用conda新创了个python3.6的虚拟环境,然后再搭建的这个语音质量指标环境,以下是搭建过程及步骤:
1.创建新环境 conda create -n tp python=3.6
2.激活环境 activate tp
3.安装必备包(因为下边要安装的包需要这些依赖,如果使用pip源的话就很慢,所以在这里提前下载下来,这三个包必须提前安装哈)
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install numba -i https://pypi.tuna.tsinghua.edu.cn/simple
4. 进入到gammatone_master里边执行python setup.py install命令
5. 安装成功,如下图所示
6. 紧接着同样的步骤安装SRMRpy,记得切换到tp环境哦
然后执行python setup.py install进行安装,出现以下界面就是安装成功了
7.接下来安装pesq,和上边的步骤一样,在对应的文件夹下进入cmd命令行,然后切换到tp虚拟环境,执行命令python setup.py install
8.和上边的操作一样,安装第四个包pystoi
9.步骤同上,安装第五个包pysepm
因为新环境并没有soundfile包(用于读取语音文件)和tqdm包(用于显示进度),所以想要以下代码,还需要安装这俩包,执行以下命令
pip install soundfile tqdm
以下就是安装成功的结果啦
都安装完以后,就可以测试语音的质量指标啦,以下就是全部的代码:
import pysepm
import os
import numpy as np
import soundfile as sf
from tqdm import tqdm
clean_wavs = 'clean_testset_wav_16k/'#这个路径,大家根据自己的需求进行修改
denoised_wavs = 'cleaned_testset_wav_16k_48700/'#同理进行修改
def file_name(file_dir):
L = []
for root, dirs, files in os.walk(file_dir):
for file in files:
if os.path.splitext(file)[1] == '.wav':
L.append(os.path.join(root, file))
return L
# get wav_lists
clean_lists = file_name(clean_wavs)
denoised_lists = file_name(denoised_wavs)
# Package files
zipped = zip(clean_lists, denoised_lists)
scores = []
CSIGs = []
CBAKs = []
COVLs = []
for (clean_wav, denoised_wav) in tqdm(zipped, 'the progressing ...'):
# Gain speech parameters
ref, sr0 = sf.read(clean_wav)
deg, sr1 = sf.read(denoised_wav)
'''
# Method 1: SNRseg (分段信噪比)
# from pysepm Call SNRseg to calculate its metrics
# in this case we can choose our frame length =0.03*1000=30 ms , and the overlap =30 ms *0.75 =22.5 ms
# 得分越高,质量越好
'''
# score = pysepm.SNRseg(ref, deg, sr0)
'''
# Method 2: llr (对数似然比测度)
#
# 得分越高,质量越好
'''
# score = pysepm.llr(ref, deg, sr0)
'''
# Method 3: WSS (加权谱倾斜测度)
#
# 得分越低,质量越好
'''
score = pysepm.wss(ref, deg, sr0)
'''
# Method 4: STOI (可短时客观可懂)
#
# the score from 0-1 . The higher the score, the better the performance.
#得分范围0~1,得分越高,质量越好
'''
# score = pysepm.stoi(ref, deg, sr0)
'''
# Method 5: PESQ
# when I try this commond , I faced some troubles , so finally I gave up this commond,
# use the PESQ.py to instead
得分范围从 -0.5~ 4.5,得分越高,效果越好
'''
NaN,score = pysepm.pesq(ref,deg,sr0)
'''
# Method 6: CD (Cepstrum Distance)
#
# 数值越高,得分越高.
'''
# score = pysepm.cepstrum_distance(ref, deg, sr0)
'''
# Method 7: LSD (对数谱距离)
# This method I use the LSD.py to calculate the distance
# 数值越小,得分越高
'''
'''
Method 1 - 7 use this score to print
'''
# score append to scores
scores.append(score)
'''
# Method 8: Composite
# In this method , It comes some errors, if you want to solve the error , see the step 8 in this file.
# CSIG , CBAK , COVL all from 1 - 5 , The higher the score, the better the performance.
'''
# CSIG,CBAK,COVL = pysepm.composite(ref, deg, sr0)
# CSIGs.append(CSIG)
# CBAKs.append(CBAK)
# COVLs.append(COVL)
# print(scores)
print('The average SegSNR evaluation is : ', sum(scores) / len(scores))
# calculate the standard deviation & variance of the scores
print('The standard deviation is : ', np.std(scores))
print('The variance is : ', np.var(scores))
# print(CSIGs,CBAKs,COVLs)
# print('The average CSIG evaluation is : ', sum(CSIGs) / len(CSIGs))
# print('The average CBAK evaluation is : ', sum(CBAKs) / len(CBAKs))
# print('The average COVL evaluation is : ', sum(COVLs) / len(COVLs))
6. if you have finished the last step ,don't forget to change the next step's setup.py .
This is done so that you do not have to repeatedly download the installed files.
And there's also the possibility of an error.
如果你在程序运行过程中出现以下问题,可以参考以下解决方案。
7. 如果你的代码在执行过程中遇到以下问题,可以参照此教程,
"
File "/home/king/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/pysepm-0.1-py3.6.egg/pysepm/__init__.py", line 4, in <module>
File "/home/king/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/pysepm-0.1-py3.6.egg/pysepm/qualityMeasures.py", line 4, in <module>
ModuleNotFoundError: No module named 'pesq'
"
找到你的环境中的这个pysepm/qualityMeasures.py文件,当然路径肯定和我这不一样哈
you can go to your file path "/home/king/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/pysepm-0.1-py3.6.egg/pysepm/qualityMeasures.py"
在源码中找到如下命令:
#import pesq as pypesq # https://github.com/ludlows/python-pesq
替换为 :
import pypesq
9. if you run the method pesq & Composite , it may be come some errors because we haven't introduced PESQ packages properly yet.
10.如果你在测量语音的pesq指标,和Composite 指标(即CBark,CSIG,COVL) ,如果出现问题,建议使用如下解决方案
打开以下文件
you can go to your file path "/home/king/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/pysepm-0.1-py3.6.egg/pysepm/qualityMeasures.py"
(1) 操作1 #在文件开头添加以下命令
"from pypesq import pesq as pq"
(2).操作2 ,替换347-359行的pesq函数
"
def pesq(clean_speech, processed_speech, fs):
if fs == 8000:
mos_lqo = pq(clean_speech,processed_speech, fs)
pesq_mos = 46607/14945 - (2000*np.log(1/(mos_lqo/4 - 999/4000) - 1))/2989#0.999 + ( 4.999-0.999 ) / ( 1+np.exp(-1.4945*pesq_mos+4.6607) )
elif fs == 16000:
mos_lqo = pq(clean_speech,processed_speech, fs)
pesq_mos = np.NaN
else:
raise ValueError('fs must be either 8 kHz or 16 kHz')
return pesq_mos,mos_lqo
"
(3).保存并且退出
博主在近期重新搞了搞这个,其实如果重新搭建环境并且按照 第二部分和第三部分环境搭建的话是没有出现问题的,且经过博主本人再三检测,以上所有音频指标均可正常检测,如果大家在使用过程中出现错误,为方便大家,我将该conda虚拟环境传输到百度云网盘,以提供给大家使用,下载完成后,将tp环境放置到conda安装路径下的envs文件夹下,之后选择虚拟环境,就可以直接在这个虚拟环境上进行操作啦。百度云链接,提取码:ggek
本博客中用于检测的音频数据,我也一并上传至百度网盘,大家也可拿来进行测试数据集链接,提取码:ybjp
- https://github.com/schmiph2/pysepm/blob/master/examples/examplesForCalculatingMeasures.ipynb (How to use the packages of SEPM)
- https://zhuanlan.zhihu.com/p/190146707 (音频质量客观评价指标)
时间 | 操作 |
---|---|
2021年4月21日 | 首发 |
2022年5月8日 | 重新编辑博客并上传网盘 |
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。