当前位置:   article > 正文

基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench_基于fpga的心率检测系统

基于fpga的心率检测系统

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 ECG信号的特点与噪声

4.2 FPGA在ECG信号处理中的应用

4.3 ECG信号滤波原理

4.4 心率计算原理

4.5 FPGA在ECG信号处理中的优势

5.算法完整程序工程


1.算法运行效果图预览

其RTL结构如下:

2.算法运行软件版本

vivado2019.2

3.部分核心程序

  1. ...................................................................
  2. //调用心率数据
  3. ECG_data ECG_data_u(
  4. .i_clk (i_clk),
  5. .i_rst (i_rst),
  6. .o_data(o_data)
  7. );
  8. //low filter
  9. wire signed[31:0]w_channel_output1;
  10. fir_lower fir_lower_u(
  11. .aresetn (~i_rst), // input sclr
  12. .aclk (i_clk), // input clk
  13. .s_axis_data_tvalid (1'b1), // output rfd
  14. .s_axis_data_tready (),
  15. .s_axis_data_tdata ({o_data[11],o_data[11],o_data[11],o_data[11],o_data}),
  16. .m_axis_data_tvalid (),
  17. .m_axis_data_tdata(w_channel_output1) // output [24 : 0] dout
  18. );
  19. assign o_data_filter1=w_channel_output1[25:10];
  20. //high filter//这里和论文不一样,我再增加一个高频滤波
  21. wire signed[31:0]w_channel_output2;
  22. fir_higher higher_filter_u(
  23. .aresetn (~i_rst), // input sclr
  24. .aclk (i_clk), // input clk
  25. .s_axis_data_tvalid (1'b1), // output rfd
  26. .s_axis_data_tready (),
  27. .s_axis_data_tdata ({o_data_filter1}),
  28. .m_axis_data_tvalid (),
  29. .m_axis_data_tdata(w_channel_output2) // output [24 : 0] dout
  30. );
  31. assign o_data_filter2=w_channel_output2[25:10];
  32. //平均滤波
  33. avg_filters avg_filters_u(
  34. .i_clk (i_clk),
  35. .i_rst (i_rst),
  36. .i_data (o_data_filter2),
  37. .o_avg_filter(o_data_avgfilter)
  38. );
  39. //===============================================================
  40. wire[15:0]o_pv2_1;
  41. dyn_lvl dyn_lvl_u(
  42. .i_clk (i_clk),
  43. .i_rst (i_rst),
  44. .i_agcamp(16'd1500),
  45. .i_pv2_1 (o_pv2_1),
  46. .o_lvl (o_lvl)
  47. );
  48. find_heart_max find_heart_max_u(
  49. .i_clk (i_clk),
  50. .i_rst (i_rst),
  51. .i_lvl (o_lvl),
  52. .i_peak (o_data_avgfilter),
  53. .o_pv2_1 (o_pv2_1),
  54. .o_idx_1 (o_idx_1),
  55. .o_delay_cnt(o_delay_cnt),
  56. .o_syn (o_syn),
  57. .curr_state (),
  58. .cnten (),
  59. .cnt0 (),
  60. .cnt1 (),
  61. .cnt2 (),
  62. .cnt3 (),
  63. .cnt4 (),
  64. .max_1 (),
  65. .max_2 (),
  66. .max_3 (),
  67. .max_4 ()
  68. );
  69. assign o_peaks = o_pv2_1;
  70. //计算心率
  71. heart_rate_cal heart_rate_cal_u(
  72. .i_clk(i_clk),
  73. .i_rst(i_rst),
  74. .i_heart (o_syn),
  75. .o_heartrate(o_heartrate),
  76. .o_heartcnt (o_heartcnt)
  77. );
  78. endmodule
  79. 37_006m

4.算法理论概述

         心电图(ECG)是医学领域中常用的一种无创检测技术,用于记录和分析心脏的电活动。由于ECG信号微弱且易受到噪声干扰,因此在采集和处理过程中需要进行滤波以提取有效信息。同时,根据滤波后的ECG信号,可以进一步计算心率等生理参数。现场可编程门阵列(FPGA)以其并行处理能力和可重构性,在ECG信号处理中发挥着重要作用。

4.1 ECG信号的特点与噪声

         ECG信号是一种低频、微弱的生物电信号,其频率范围主要集中在0.05Hz至100Hz之间。典型的ECG波形包括P波、QRS波群和T波等。在信号采集过程中,ECG信号容易受到基线漂移、工频干扰、肌电干扰和电极接触噪声等的影响。

4.2 FPGA在ECG信号处理中的应用

       FPGA作为一种高性能的数字信号处理器件,可以实现复杂的数字滤波算法,以去除ECG信号中的噪声干扰。常用的数字滤波器包括低通滤波器、高通滤波器和带通滤波器等。

4.3 ECG信号滤波原理

  1. 低通滤波器:用于去除高频噪声,如肌电干扰和工频干扰。其数学表达式为:

(H(z) = \sum_{k=0}^{N} b_k z^{-k} / \sum_{k=0}^{M} a_k z^{-k})

其中,(H(z))为滤波器的传递函数,(b_k)和(a_k)为滤波器的系数,(N)和(M)为滤波器的阶数。

  1. 高通滤波器:用于去除基线漂移等低频噪声。其数学表达式与低通滤波器类似,但系数不同。

  2. 带通滤波器:结合低通和高通滤波器的特点,仅允许特定频率范围内的信号通过,以提取ECG信号中的有效信息。

4.4 心率计算原理

        心率计算通常基于ECG信号中的R波进行检测。R波是ECG信号中幅度最大、最易于识别的波形之一。通过检测R波的间隔时间(RR间期),可以计算出心率。

        心率(HR)的计算公式为:

        (HR = 60 / RR)

        其中,RR为两个相邻R波的时间间隔(以秒为单位)。

       在FPGA中实现心率计算时,通常需要先对滤波后的ECG信号进行阈值检测或峰值检测,以准确识别R波的位置。然后,通过计时器或计数器测量RR间期,并根据上述公式计算心率。

4.5 FPGA在ECG信号处理中的优势

  1. 并行处理能力:FPGA可以同时处理多个数据通道,实现高速的ECG信号采集和处理。

  2. 可重构性:FPGA可以根据不同的应用需求灵活配置滤波器和心率计算算法。

  3. 低功耗:相比其他高性能处理器,FPGA在功耗方面具有优势,适用于便携式医疗设备。

5.算法完整程序工程

OOOOO

OOO

O

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/470086
推荐阅读
相关标签
  

闽ICP备14008679号