当前位置:   article > 正文

LQR轨迹跟踪算法Python/Matlab算法实现_基于matlablqr轨迹跟踪csdn

基于matlablqr轨迹跟踪csdn

Python:

"""
Path tracking simulation with LQR steering control and PID speed control.
author Atsushi Sakai (@Atsushi_twi)
"""
import sys
sys.path.append("H:\Project\TrajectoryPlanningModelDesign\Codes\frenet_optimal\frenet_optimal")
import cubic_spline
import numpy as np
import math
import matplotlib.pyplot as plt
import scipy.linalg as la


Kp = 1.0  # speed proportional gain

# LQR parameter
Q = np.eye(4)
R = np.eye(1)

# parameters
dt = 0.1  # time tick[s]
L = 0.5  # Wheel base of the vehicle [m]
max_steer = math.radians(45.0)  # maximum steering angle[rad]

show_animation = True
#  show_animation = False


class State:

    def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
        self.x = x
        self.y = y
        self.yaw = yaw
        self.v = v


def update(state, a, delta):

    if delta >= max_steer:
        delta = max_steer
    if delta <= - max_steer:
        delta = - max_steer

    state.x = state.x + state.v * math.cos(state.yaw) * dt
    state.y = state.y + state.v * math.sin(state.yaw) * dt
    state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
    state.v = state.v + a * dt

    return state


def PIDControl(target, current):
    a = Kp * (target - current)

    return a


def pi_2_pi(angle): # the unit of angle is in rad;
    while (angle > math.pi):
        angle = angle - 2.0 * math.pi

    while (angle < -math.pi):
        angle = angle + 2.0 * math.pi

    return angle


def solve_DARE(A, B, Q, R):
    """
    solve a discrete time_Algebraic Riccati equation (DARE)
    """
    X = Q
    maxiter = 150
    eps = 0.01

    for i in range(maxiter):
        Xn = A.T * X * A - A.T * X * B * \
            la.inv(R + B.T * X * B) * B.T * X * A + Q
        if (abs(Xn - X)).max() < eps:
            X = Xn
            break
        X = Xn

    return Xn


def dlqr(A, B, Q, R):
    """Solve the discrete time lqr controller.
    x[k+1] = A x[k] + B u[k]
    cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]
    # ref Bertsekas, p.151
    """

    # first, try to solve the ricatti equation
    X = solve_DARE(A, B, Q, R)

    # compute the LQR gain
    K = np.matrix(la.inv(B.T * X * B + R) * (B.T * X * A))

    eigVals, eigVecs = la.eig(A - B * K)

    return K, X, eigVals


def lqr_steering_control(state, cx, cy, cyaw, ck, pe, pth_e):
    ind, e = calc_nearest_index(state, cx, cy, cyaw)

    k = ck[ind]
    v = state.v
    th_e = pi_2_pi(state.yaw - cyaw[ind])

    A = np.matrix(np.zeros((4, 4)))
    A[0, 0] = 1.0
    A[0, 1] = dt
    A[1, 2] = v
    A[2, 2] = 1.0
    A[2, 3] = dt
    # print(A)

    B = np.matrix(np.zeros((4, 1)))
    B[3, 0] = v / L

    K, _, _ = dlqr(A, B, Q, R)

    x = np.matrix(np.zeros((4, 1)))

    x[0, 0] = e
    x[1, 0] = (e - pe) / dt
    x[2, 0] = th_e
    x[3, 0] = (th_e - pth_e) / dt

    ff = math.atan2(L * k, 1)
    fb = pi_2_pi((-K * x)[0, 0])

    delta = 2*ff + 1 * fb

    return delta, ind, e, th_e


def calc_nearest_index(state, cx, cy, cyaw):
    dx = [state.x - icx for icx in cx]
    dy = [state.y - icy for icy in cy]

    d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]

    mind = min(d)

    ind = d.index(mind)

    dxl = cx[ind] - state.x
    dyl = cy[ind] - state.y

    angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
    if angle < 0:
        mind *= -1

    return ind, mind


def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal):
    T = 500.0  # max simulation time
    goal_dis = 0.3
    stop_speed = 0.05

    state = State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)

    time = 0.0
    x = [state.x]
    y = [state.y]
    yaw = [state.yaw]
    v = [state.v]
    t = [0.0]
    target_ind = calc_nearest_index(state, cx, cy, cyaw)

    e, e_th = 0.0, 0.0

    while T >= time:
        dl, target_ind, e, e_th = lqr_steering_control(
            state, cx, cy, cyaw, ck, e, e_th)

        ai = PIDControl(speed_profile[target_ind], state.v)
        state = update(state, ai, dl)

        if abs(state.v) <= stop_speed:
            target_ind += 1

        time = time + dt

        # check goal
        dx = state.x - goal[0]
        dy = state.y - goal[1]
        if math.sqrt(dx ** 2 + dy ** 2) <= goal_dis:
            print("Goal")
            break

        x.append(state.x)
        y.append(state.y)
        yaw.append(state.yaw)
        v.append(state.v)
        t.append(time)

        if target_ind % 1 == 0 and show_animation:
            plt.cla()
            plt.plot(cx, cy, "-r", label="course")
            plt.plot(x, y, "ob", label="trajectory")
            plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
            plt.axis("equal")
            plt.grid(True)
            plt.title("speed[km/h]:" + str(round(state.v * 3.6, 2)) +
                      ",target index:" + str(target_ind))
            plt.pause(0.0001)

    return t, x, y, yaw, v


def calc_speed_profile(cx, cy, cyaw, target_speed):
    speed_profile = [target_speed] * len(cx)

    direction = 1.0

    # Set stop point
    for i in range(len(cx) - 1):
        dyaw = abs(cyaw[i + 1] - cyaw[i])
        switch = math.pi / 4.0 <= dyaw < math.pi / 2.0

        if switch:
            direction *= -1

        if direction != 1.0:
            speed_profile[i] = - target_speed
        else:
            speed_profile[i] = target_speed

        if switch:
            speed_profile[i] = 0.0

    speed_profile[-1] = 0.0

    #  flg, ax = plt.subplots(1)
    #  plt.plot(speed_profile, "-r")
    #  plt.show()

    return speed_profile


def main():
    print("LQR steering control tracking start!!")
    ax = [0.0, 6.0, 12.5, 10.0, 7.5, 3.0, -1.0]
    ay = [0.0, -3.0, -5.0, 6.5, 3.0, 5.0, -2.0]
    goal = [ax[-1], ay[-1]]

    cx, cy, cyaw, ck, s = cubic_spline.calc_spline_course(
        ax, ay, ds=0.1)
    target_speed = 10.0 / 3.6  # simulation parameter km/h -> m/s

    sp = calc_speed_profile(cx, cy, cyaw, target_speed)

    t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, ck, sp, goal)

    if show_animation:
        plt.close()
        flg, _ = plt.subplots(1)
        plt.plot(ax, ay, "xb", label="input")
        plt.plot(cx, cy, "-r", label="spline")
        plt.plot(x, y, "-g", label="tracking")
        plt.grid(True)
        plt.axis("equal")
        plt.xlabel("x[m]")
        plt.ylabel("y[m]")
        plt.legend()

        flg, ax = plt.subplots(1)
        plt.plot(s, [math.degrees(iyaw) for iyaw in cyaw], "-r", label="yaw")
        plt.grid(True)
        plt.legend()
        plt.xlabel("line length[m]")
        plt.ylabel("yaw angle[deg]")

        flg, ax = plt.subplots(1)
        plt.plot(s, ck, "-r", label="curvature")
        plt.grid(True)
        plt.legend()
        plt.xlabel("line length[m]")
        plt.ylabel("curvature [1/m]")

        plt.show()


if __name__ == '__main__':
    main()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291

然后还要把cubic spline放在同一个project下进行调用, 注意修改路径,我的路径是:

sys.path.append("H:\Project\TrajectoryPlanningModelDesign\Codes\python\tracking_pure_stan")
#自己把它修改成你的路径。然后系统就可以调用了。
#下面就是cubic spline的class,
  • 1
  • 2
  • 3
import math
import numpy as np
import bisect


class Spline:
    u"""
    Cubic Spline class
    """

    def __init__(self, x, y):
        self.b, self.c, self.d, self.w = [], [], [], []

        self.x = x
        self.y = y

        self.nx = len(x)  # dimension of x
        h = np.diff(x)

        # calc coefficient c
        self.a = [iy for iy in y]

        # calc coefficient c
        A = self.__calc_A(h)
        B = self.__calc_B(h)
        self.c = np.linalg.solve(A, B)
        #  print(self.c1)

        # calc spline coefficient b and d
        for i in range(self.nx - 1):
            self.d.append((self.c[i + 1] - self.c[i]) / (3.0 * h[i]))
            tb = (self.a[i + 1] - self.a[i]) / h[i] - h[i] * \
                (self.c[i + 1] + 2.0 * self.c[i]) / 3.0
            self.b.append(tb)

    def calc(self, t):
        u"""
        Calc position
        if t is outside of the input x, return None
        """

        if t < self.x[0]:
            return None
        elif t > self.x[-1]:
            return None

        i = self.__search_index(t)
        dx = t - self.x[i]
        result = self.a[i] + self.b[i] * dx + \
            self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0

        return result

    def calcd(self, t):
        u"""
        Calc first derivative
        if t is outside of the input x, return None
        """

        if t < self.x[0]:
            return None
        elif t > self.x[-1]:
            return None

        i = self.__search_index(t)
        dx = t - self.x[i]
        result = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0
        return result

    def calcdd(self, t):
        u"""
        Calc second derivative
        """

        if t < self.x[0]:
            return None
        elif t > self.x[-1]:
            return None

        i = self.__search_index(t)
        dx = t - self.x[i]
        result = 2.0 * self.c[i] + 6.0 * self.d[i] * dx
        return result

    def __search_index(self, x):
        u"""
        search data segment index
        """
        return bisect.bisect(self.x, x) - 1

    def __calc_A(self, h):
        u"""
        calc matrix A for spline coefficient c
        """
        A = np.zeros((self.nx, self.nx))
        A[0, 0] = 1.0
        for i in range(self.nx - 1):
            if i != (self.nx - 2):
                A[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1])
            A[i + 1, i] = h[i]
            A[i, i + 1] = h[i]

        A[0, 1] = 0.0
        A[self.nx - 1, self.nx - 2] = 0.0
        A[self.nx - 1, self.nx - 1] = 1.0
        #  print(A)
        return A

    def __calc_B(self, h):
        u"""
        calc matrix B for spline coefficient c
        """
        B = np.zeros(self.nx)
        for i in range(self.nx - 2):
            B[i + 1] = 3.0 * (self.a[i + 2] - self.a[i + 1]) / \
                h[i + 1] - 3.0 * (self.a[i + 1] - self.a[i]) / h[i]
        #  print(B)
        return B


class Spline2D:
    u"""
    2D Cubic Spline class
    """

    def __init__(self, x, y):
        self.s = self.__calc_s(x, y)
        self.sx = Spline(self.s, x)
        self.sy = Spline(self.s, y)

    def __calc_s(self, x, y):
        dx = np.diff(x)
        dy = np.diff(y)
        self.ds = [math.sqrt(idx ** 2 + idy ** 2)
                   for (idx, idy) in zip(dx, dy)]
        s = [0]
        s.extend(np.cumsum(self.ds))
        return s

    def calc_position(self, s):
        u"""
        calc position
        """
        x = self.sx.calc(s)
        y = self.sy.calc(s)

        return x, y

    def calc_curvature(self, s):
        u"""
        calc curvature
        """
        dx = self.sx.calcd(s)
        ddx = self.sx.calcdd(s)
        dy = self.sy.calcd(s)
        ddy = self.sy.calcdd(s)
        k = (ddy * dx - ddx * dy) / (dx ** 2 + dy ** 2)
        return k

    def calc_yaw(self, s):
        u"""
        calc yaw
        """
        dx = self.sx.calcd(s)
        dy = self.sy.calcd(s)
        yaw = math.atan2(dy, dx)
        return yaw


def calc_spline_course(x, y, ds=0.1):
    sp = Spline2D(x, y)
    s = list(np.arange(0, sp.s[-1], ds))

    rx, ry, ryaw, rk = [], [], [], []
    for i_s in s:
        ix, iy = sp.calc_position(i_s)
        rx.append(ix)
        ry.append(iy)
        ryaw.append(sp.calc_yaw(i_s))
        rk.append(sp.calc_curvature(i_s))

    return rx, ry, ryaw, rk, s
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182

Matlab

clc
clear all
Kp = 1.0 ; 
dt = 0.1  ;% [s]
L = 2.9 ;% [m] wheel base of vehicle
Q = eye(4);
R = eye(1);
max_steer =60 * pi/180; % in rad
target_speed = 15.0 / 3.6;

cx = 0:0.1:200; % sampling interception from 0 to 100, with step 0.1
for i = 1:500% here we create a original reference line, which the vehicle should always follow when there is no obstacles;
    cy(i) = -sin(cx(i)/20)*cx(i)/2;
end
for i = 501: length(cx)
    cy(i) = -sin(cx(i)/20)*cx(i)/2; %cy(500);
end

p = [cx', cy'];
 for i = 1:length(cx)-1
 pd(i) = (p(i+1,2)-p(i,2))/(p(i+1,1)-p(i,1));
 end
 pd(end+1) = pd(end);
  %计算一阶导数
 for i =2: length(cx)-1
     pdd(i) = (p(i+1,2)-2*p(i,2) + p(i-1,2))/(0.5*(-p(i-1,1)+p(i+1,1)))^2;
 end
      pdd(1) = pdd(2);
     pdd(length(cx)) = pdd(length(cx)-1);
     
  for i  = 1:length(cx)
     k(i) = (pdd(i))/(1+pd(i)^2)^(1.5);
  end
  
  cx= cx'
  cy =cy'
  cyaw = atan(pd');
 
  ck = k'
%   plot(1:1001, cyaw)
%   plot(1:1001, ck)
%   plot(1:1001, pd)
pe = 0; pth_e = 0;
i = 1;
target_v = 10/3.6;
T = 80;
lastIndex = length(cx);
x = 0; y = -1; yaw = 0; v = 0;
time = 0;
ind =0;
figure

while ind < length(cx)
   
    [delta,ind,e,th_e] =  lqr_steering_control(x,y,v,yaw,cx,cy,cyaw,ck, pe, pth_e,L,Q,R,dt);
    pe =e;
    pth_e = th_e;
    if abs(e)> 4
        fprintf('mayday mayday!\n')
        break;
    end
    delta
    a = PIDcontrol(target_v, v, Kp);
     [x,y,yaw,v] = update(x,y,yaw,v, a, delta, dt,L, max_steer);
     posx(i) = x;
     posy(i)  =y;
     i = i+1;
     plot(cx,cy,'r-')
     hold on
     plot(posx(i-1),posy(i-1),'bo')
      drawnow
     
      hold on
end

% function"Update" updates vehicle states
function [x, y, yaw, v] = update(x, y, yaw, v, a, delta,dt,L,max_steer)
 delta = max(min(max_steer, delta), -max_steer);
    x = x + v * cos(yaw) * dt;
    y = y + v * sin(yaw) * dt;
    yaw = yaw + v / L * tan(delta) * dt;
   v = v + a * dt;
end

function [a] = PIDcontrol(target_v, current_v, Kp)
a = Kp * (target_v - current_v);
end

function [angle] = pipi(angle) % the unit of angle is in rad;

if (angle > pi)
    angle =  angle - 2*pi;
elseif (angle < -pi)
    angle = angle + 2*pi;
else
    angle = angle;
end
end

function [Xn] = solve_DARE(A,B,Q,R)
X = Q;
maxiter = 150;
epsilon = 0.01;
for i = 1:maxiter
    Xn = A' * X * A - A' * X * B * ((R + B' * X * B) \ B') * X * A +Q;
    if abs(Xn - X) <= epsilon
        X = Xn;
        break;
    end
    X = Xn;
end
end

function [K] = dlqr (A,B,Q,R)
X = solve_DARE(A,B,Q,R);
K = (B' * X * B + R) \ (B' * X * A);
end

function [delta,ind,e,th_e] =  lqr_steering_control(x,y,v,yaw,cx,cy,cyaw,ck, pe, pth_e,L,Q,R,dt)
[ind, e] = calc_target_index(x,y,cx,cy,cyaw);
k =ck(ind);
th_e = pipi(yaw -cyaw(ind));
A = zeros(4,4);

A(1,1) = 1; A(1,2) = dt; A(2,3) = v; A(3,3) = 1; A(3,4) = dt;
B= zeros(4,1);
B(4,1) = v/L;
K = dlqr(A,B,Q,R);
x = zeros(4,1);
x(1,1)=e; x(2,1)= (e-pe)/dt; x(3,1) = th_e; x(4,1) = (th_e - pth_e)/dt;
ff = atan(L * (k));
fb = pipi(-K * x);
delta =   1*ff + 1*fb;
ff
fb
end

function [ind, error] = calc_target_index(x,y, cx,cy,cyaw)
N =  length(cx);
Distance = zeros(N,1);
for i = 1:N
Distance(i) =  sqrt((cx(i)-x)^2 + (cy(i)-y)^2);
end
[value, location]= min(Distance);
ind = location

dx1 = cx(ind)- x;
dy1 = cy(ind) -y;
angle = pipi(cyaw(ind)-atan(dy1/dx1));
heading = cyaw(ind)*180/pi
    if y<cy(ind) 
        error = -value;
    else
        error = value;
    end

end

% if cx(ind)> x
%     error = -value;
% else
% error = value;
% end



  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166

效果如图:
在这里插入图片描述
在这里插入图片描述
效果非常一般,我更加推荐Stanley 和Pure pursuit

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/471921
推荐阅读
相关标签
  

闽ICP备14008679号