当前位置:   article > 正文

图像哈希:全局+局部提取特征

图像哈希:全局+局部提取特征
文章信息
  1. 作者:梁小平,唐振军
  2. 期刊:ACM Trans. Multimedia Comput. Commun. Appl(三区)
  3. 题目:Robust Hashing via Global and Local Invariant Features for Image Copy Detection
目的、实验步骤及结论
  1. 目的:通过全局和局部提取特征来生成最终图像的哈希值

  2. 实验步骤:
    在这里插入图片描述

    • 数据预处理:双线性插值(512 * 512)
    • 全局特征:
      • PDFT生成显著图S
      • 对GLCM使用四种参数(不同的角度)得到四个矩阵,每个矩阵得到4个统计特征,得到 1 * 16 的全局特征向量
    • 局部特征:
      • 使用HSV中的V分量,分块(64 * 64),将每一个块拼接成一个列向量,使用KPCA后得到d * N的矩阵。
      • 计算每一个矩阵维度的均值作为参考向量,计算所有向量(每一列)和参考向量的距离作为局部特征
    • 生成哈希值:将全局特征和局部特征进行拼接,使用量度排序作为最后的哈希值(长度为N+16)。
    • 相似性评价:使用汉明距离判断两张图片是否一致,若小于阈值则是相同图片。
  3. 结论

    • 首次提出KPCA应用于图像哈希
    • 适用于混合攻击
    • 全局特征对几何攻击(尤其是缩放和旋转)很敏感,而局部特征无法保持全局上下文信息导致判别效果不佳。
    • 使用全局和局部结合特征可以更加有利于互补进行提取特征。

本篇论文的实现代码如下:

def image_hash(img_path):
    img = processing(img_path)
    global_feature = global_feature_gen(img)
    local_feature = local_feature_gen(img, 10000, 4)
    h_i = gen_hashing(global_feature, local_feature)
    return h_i

def processing(img_path):
    """
    input:图片的路径
    output:处理后的RGB图片
    """
    try:
        img = cv2.imread(img_path)
        x = img.shape[0]//2 # 高度
        y = img.shape[1]//2 # 宽度
        Min = x if x<y else y
        cropped_image = img[x-Min:x+Min, y-Min:y+Min] # 裁剪图像
        img = cv2.resize((cropped_image), (512,512), interpolation=cv2.INTER_LINEAR)
    except:
        img = imageio.mimread(img_path)
        img = np.array(img)
        img = img[0]
        img = img[:, :, 0:3]
        x = img.shape[0]//2 # 高度
        y = img.shape[1]//2 # 宽度
        Min = x if x<y else y
        cropped_image = img[x-Min:x+Min, y-Min:y+Min, :] # 裁剪图像
        img = cv2.resize((cropped_image), (512,512), interpolation=cv2.INTER_LINEAR)
#     out = cv2.GaussianBlur(img, (3, 3),1.3) # 使用python自带的高斯滤波
    kernel = np.array([[1,2,1],[2,4,2],[1,2,1]])/16
    out = cv2.filter2D(img, -1 , kernel=kernel)  # 二维滤波器
    # out = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
    out = cv2.cvtColor(out, cv2.COLOR_BGR2HSV)
    return out

def local_feature_gen(img, sigma, n_components):
    """
    iamge:(512,512,3)
    return: 降维之后的图像(d, N)
    """
    from sklearn.decomposition import PCA, KernelPCA
    N_list = []
    V = img[:,:,2]
    for i in range(0,V.shape[0],64):
        for j in range(0,V.shape[1],64):
            image_block = V[i:i+64, j:j+64]
            N_list.append(image_block.reshape(-1)[:])
    N_list = np.array(N_list).copy()
    # kernel_pca = KernelPCA(n_components=4, kernel="poly", gamma=10)
    # result = kernel_pca.fit_transform(N_list)
    result = kpca(N_list, sigma, 4).copy()
    return result.T
    
def gaussian_kernel(X, sigma):
    sq_dists = pdist(X, 'sqeuclidean')  # 计算所有样本点之间的平方欧式距离
    mat_sq_dists = squareform(sq_dists)  # 转换成矩阵形式
    return np.exp(-mat_sq_dists / (2 * sigma**2))  # 计算高斯核矩阵

def kpca(X, sigma, n_components):
    # 步骤1: 计算高斯核矩阵
    K = gaussian_kernel(X, sigma)
    # 步骤2: 中心化核矩阵
    N = K.shape[0]
    one_n = np.ones((N, N)) / N
    K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)
    # 步骤3: 计算特征值和特征向量
    eigenvalues, eigenvectors = eigh(K)
    eigenvalues, eigenvectors = eigenvalues[::-1], eigenvectors[:, ::-1]  # 降序排列
    # 步骤4: 提取前n个特征向量
    alphas = eigenvectors[:, :n_components]
    lambdas = eigenvalues[:n_components]
    return alphas / np.sqrt(lambdas)  # 归一化特征向量

def global_feature_gen(img):
    P = pqft(img)
    return P
def pqft(img, sigma=8):
    h, w, channel = img.shape
    r, b, g = img[:,:,0], img[:,:,1], img[:,:,2]
    R = r - (g + b)/2
    G = g - (r + b)/2
    B = b - (r + g)/2
    Y = (r + g)/2 - (abs(r - g))/2 - b
    RG = R - G
    BY =B - Y
    I1 = ((r+g+b) /3)
    M = np.zeros((h, w))
    f1 = M + RG * 1j
    f2 = BY + I1 * 1j
    F1 = np.fft.fft2(f1)
    F2 = np.fft.fft2(f2)
    phaseQ1 = np.angle(F1)
    phaseQ2 = np.angle(F2)
    ifftq1 = np.fft.ifft2(np.exp(phaseQ1 * 1j))
    ifftq2 = np.fft.ifft2(np.exp(phaseQ2 * 1j))
    absq1 = np.abs(ifftq1)
    absq2 = np.abs(ifftq2)
    squareq=(absq1+absq2) * (absq1+absq2)
    out = cv2.GaussianBlur(squareq, (5, 5), sigma)
    out = cv2.normalize(out.astype('float'), None, 0, 255, cv2.NORM_MINMAX)
    return out

def gen_hashing(global_feature, local_feature):
    """
    先求出列均值,在算出每一列之间的距离,最后使用序数度量来代表哈希值
    input:array (x,64,64)
    output:list (x)
    """
    result = glcm(global_feature)
    y_mean = np.mean(local_feature, axis = 0)
    z = np.sqrt((y_mean[1:] - y_mean[:-1]) ** 2) * 1000
    result.extend(z)
    sorted_indices = sorted(range(len(result)), key=lambda i: result[i])
    result = [sorted_indices.index(i)+1 for i in range(len(result))]
    return result
    
def glcm(img, levels = 32):
    '''
    https://www.cnblogs.com/xiaoliang-333/articles/16937977.html
    graycom = greycomatrix(img, [1], [0, np.pi/4, np.pi/2, np.pi*3/4], levels=256)
    c = feature.greycoprops(graycom, 'contrast')  # 对比度
    d = feature.greycoprops(graycom, 'dissimilarity')   # 相异性
    h = feature.greycoprops(graycom, 'homogeneity')    # 同质性
    e = feature.greycoprops(graycom, 'energy')    # 能量
    corr = feature.greycoprops(graycom, 'correlation')    # 相关性
    ASM = feature.greycoprops(graycom, 'ASM')     # 角二阶矩
    '''
    from skimage.feature import graycomatrix, graycoprops
    img = img.astype(np.float64)
    img = img * levels / 256.0
    img = img.astype(np.uint8)
    distances = [1, 1, 1, 1]  
    angles = [0, 45, 90, 135] 
    #初始化一个空列表来存储GLCM矩阵统计特征
    glcms = []
    #为每个距离和角度组合计算 GLCM
    for d,a in zip(distances,angles):
        glcm = graycomatrix(img,distances=[d],angles=[a],levels=levels,symmetric=True, normed=True)
        contrast = graycoprops(glcm, 'ASM')     
        glcms.append(contrast[0, 0])
        
        correlation = graycoprops(glcm, 'contrast')  
        glcms.append(correlation[0, 0])
        
        energy = graycoprops(glcm, 'correlation')    
        glcms.append(energy[0, 0])
        
        homogeneity = graycoprops(glcm, 'homogeneity')    
        glcms.append(homogeneity[0, 0])
    # return np.array(np.round(glcms), dtype=np.uint8)
    return glcms

def dist_img(h1,h2):
    # distance = np.count_nonzero(np.array(list(h1)) != np.array(list(h2)))
    # return distance / len(h1)
    h1 = np.array(h1)
    h2 = np.array(h2)
    return sum(np.abs(h1-h2))/len(h1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/479156
推荐阅读
相关标签
  

闽ICP备14008679号