赞
踩
实际场景中,我们之所以觉得有些问题很难解决,主要原因是该问题涉及到大量的数据,如果只需要处理少量的数据,问题会变得非常容易解决。
举一个简单的例子,设计一个排序算法实现对 1000 个整数进行排序。对于很多刚刚接触算法的初学者来说,直接实现对 1000 个整数进行排序是非常困难的。而同样的问题,如果转换成对 2 个整数进行排序,解决起来就很容易。
分治算法中,“分治”即“分而治之”的意思。分治算法解决问题的思路是:先将整个问题拆分成多个相互独立且数据量更少的小问题,通过逐一解决这些简单的小问题,最终找到解决整个问题的方案。
所谓问题间相互独立,简单理解就是每个问题都可以单独处理,不存在“谁先处理,谁后处理”的次序问题。
如图 1 所示,分治算法解决问题的过程需要经历 3 个阶段,分别是:
分:将整个问题划分成多个相对独立、涉及数据量更少的小问题,有些小问题还可以划分成很多更小的问题,直至每个问题都不可再分;
治:逐个解决所有的小问题;
合并:将所有小问题的解决方案合并到一起,找到解决整个问题的方案。
分治算法的利弊
使用分治算法解决的问题都具备这样的特征,当需要处理的数据量很少时,问题很容易就能解决,随着数据量增多,问题的解决难度也随之增大。分治算法通过将问题“分而治之”,每个小问题只需要处理少量的数据,每个小问题都很容易解决,最终就可以解决整个问题。
分治算法中,“分而治之”的小问题之间是相互独立的,处理次序不分先后,因此可以采用“并行”的方式让计算机同时处理多个小问题,提高问题的解决效率。
分治算法的弊端也很明显,该算法经常和递归算法搭配使用,整个解决问题的过程会耗费较多的时间和内存空间,严重时还可能导致程序运行崩溃。
分治算法的应用场景
分治算法解决的经典问题有很多,包括汉诺塔问题、寻找数列中最大值和最小值的问题等等。
分治算法还和其它算法搭配使用,比如二分查找算法、归并排序算法、快速排序算法等,后续章节会给大家一一进行讲解。
来到例题。
每年奶牛们都要举办各种特殊版本的跳房子比赛,包括在河里从一个岩石跳到另一个岩石。这项激动人心的活动在一条长长的笔直河道中进行,在起点和离起点L远 (1 ≤ L≤ 1,000,000,000) 的终点处均有一个岩石。在起点和终点之间,有N (0 ≤ N ≤ 50,000) 个岩石,每个岩石与起点的距离分别为Di (0 < Di < L)。
在比赛过程中,奶牛轮流从起点出发,尝试到达终点,每一步只能从一个岩石跳到另一个岩石。当然,实力不济的奶牛是没有办法完成目标的。
农夫约翰为他的奶牛们感到自豪并且年年都观看了这项比赛。但随着时间的推移,看着其他农夫的胆小奶牛们在相距很近的岩石之间缓慢前行,他感到非常厌烦。他计划移走一些岩石,使得从起点到终点的过程中,最短的跳跃距离最长。他可以移走除起点和终点外的至多M (0 ≤ M ≤ N) 个岩石。
请帮助约翰确定移走这些岩石后,最长可能的最短跳跃距离是多少?
第一行包含三个整数L, N, M,相邻两个整数之间用单个空格隔开。
接下来N行,每行一个整数,表示每个岩石与起点的距离。岩石按与起点距离从近到远给出,且不会有两个岩石出现在同一个位置。
一个整数,最长可能的最短跳跃距离。
25 5 2 2 11 14 17 21
4
好不多说,直接上代码:
- #include <bits/stdc++.h>
- using namespace std;
- int w, m, n, a[50005], l = 1, r, mid, s;
- int main()
- {
- cin >> w >> n >> m;
- for(int i = 1; i <= n; i++)
- scanf("%d", &a[i]);
- n++;
- a[n] = w; r = w;
- while(l <= r)
- {
- mid = (l + r) / 2;
- s = 0;
- for(int i = 1; i <= n; i++)
- {
- int q = a[i - 1];
- while(a[i] - q < mid)
- {
- s++;
- i++;
- }
- }
- if(s > m) r = mid - 1;
- else l = mid + 1;
- }
- cout << r << endl;
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。