当前位置:   article > 正文

SpringBoot项目通过分词器生成词云_springboot 获得分词器

springboot 获得分词器


前言

公司项目涉及到员工任务管理,需要从员工任务中获取任务信息生成个人词云图,可以把员工任务中较为高频的词语突出展示。


一、词云是什么?

词云就是对文本中出现频率较高的“关键词”予以视觉上的突出,形成“关键词云层” 或“关键词渲染”,从而过滤掉大量的文本信息,使浏览网页者只要一眼扫过文本就可以领略文本的主旨。

在这里插入图片描述

二、使用步骤

1.引入依赖

<!--   IK分词器    -->
<dependency>
    <groupId>cn.shenyanchao.ik-analyzer</groupId>
    <artifactId>ik-analyzer</artifactId>
    <version>9.0.0</version>
</dependency>

<!--    詞雲    -->
<dependency>
    <groupId>com.kennycason</groupId>
    <artifactId>kumo-core</artifactId>
    <version>1.28</version>
</dependency>

<dependency>
    <groupId>com.kennycason</groupId>
    <artifactId>kumo-tokenizers</artifactId>
    <version>1.28</version>
</dependency>

<!--    web    -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>

<dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <optional>true</optional>
</dependency>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

2.application.yml

server:
  port: 8088

# 关闭日志输出 (可选)
logging:
  level:
    com.kennycason.kumo.WordCloud: OFF
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

3.Controller

import com.chendi.mydemo.utils.IkAnalyzerUtils;
import com.chendi.mydemo.utils.WorkCloudUtil;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;

@RestController
public class TestController {

    @GetMapping("/")
    public void test() {
        List<String> list = new ArrayList<>();
        list.add("爱购物,爱手机,爱电脑,爱上网");
        list.add("爱学习,爱游戏,爱吃饭,爱睡觉");
        list.add("爱上班,爱下班,爱加班,爱翘班");
        list.add("爱上班,爱下班,爱加班,爱翘班");
        list.add("夏天的阳光明媚灿烂,\n" +
                "大自然万物生机盎然。\n" +
                "清晨的微风吹过花丛,\n" +
                "点缀着青草和蓝天。\n" +
                "\n" +
                "蝴蝶翩翩起舞在花间,\n" +
                "蜜蜂忙碌采集甘甜。\n" +
                "鸟儿欢快地歌唱着,\n" +
                "为夏日带来欢欣和欢愉。\n" +
                "\n" +
                "海浪轻拍沙滩起伏,\n" +
                "沙粒细腻温热宜走。\n" +
                "阳光透过水面璀璨,\n" +
                "让海洋如银河般流动。\n" +
                "\n" +
                "夏日的夜晚星空闪耀,\n" +
                "月亮洒下银色光晕。\n" +
                "夏虫的音符演奏着,\n" +
                "营造出夏夜的美妙。\n" +
                "\n" +
                "夏天啊,你是如此迷人,\n" +
                "给人们带来快乐和欢欣。\n" +
                "在你的怀抱里,我们尽情享受,\n" +
                "夏天,你是美丽的季节!");

        Map<String, Integer> wordMap = IkAnalyzerUtils.wordCloud(list, 0);
        WorkCloudUtil.generateWriteImage(wordMap);
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

4.分词工具类

import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;

import java.io.IOException;
import java.io.StringReader;
import java.util.*;

/**
 * 解析工具类
 */
public class IkAnalyzerUtils {

    /**
     * 拆分词云
     *
     * @param list     需要拆分的词云集合
     * @param quantity 结果集取的数量
     */
    public static String wordCloudParsing(List<String> list, Integer quantity) {
        Map<String,Integer> result = wordCloud(list,quantity);
        StringBuilder str = new StringBuilder();
        result.forEach((k, v) -> {
            String value = " " + k;
            str.append(value);
        });
        return str.toString().trim();
    }

    /**
     * 拆分词云
     *
     * @param list     需要拆分的词云集合
     * @param quantity 结果集取的数量
     */
    public static List<Map<String,Object>> wordCloudList(List<String> list, Integer quantity) {
        Map<String,Integer> result = wordCloud(list,quantity);
        List<Map<String,Object>> mapList = new LinkedList<>();
        result.forEach((k, v) -> {
            Map<String,Object> map = new HashMap<>(16);
            map.put("name",k);
            map.put("value",v);
            mapList.add(map);
        });
        Collections.reverse(mapList);
        return mapList;
    }

    /**
     * 拆分词云
     *
     * @param list     需要拆分的词云集合
     * @param quantity 结果集取的数量
     */
    public static Map<String,Integer> wordCloud(List<String> list, Integer quantity) {
        StringReader reader = new StringReader(String.join(",", list));
        IKSegmenter ikSegmenter = new IKSegmenter(reader, true);
        Map<String, Integer> map = null;
        try {
            Lexeme lexeme;
            map = new HashMap<>(16);
            while ((lexeme = ikSegmenter.next()) != null) {
                String str = lexeme.getLexemeText();
                Integer num = map.get(str);
                if (num != null && num > 0) {
                    map.put(str, num + 1);
                } else {
                    map.put(str, 1);
                }
            }
            reader.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
        Map<String, Integer> result = new LinkedHashMap<>();
        if (quantity != null && quantity > 0) {
            map.entrySet().stream().sorted(Map.Entry.comparingByValue()).limit(quantity)
                    .forEachOrdered(item -> result.put(item.getKey(), item.getValue()));
        } else {
            map.entrySet().stream().sorted(Map.Entry.comparingByValue())
                    .forEachOrdered(item -> result.put(item.getKey(), item.getValue()));
        }
        return result;
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85

4.词云生成工具类、支持输出文件和字节流

import com.kennycason.kumo.CollisionMode;
import com.kennycason.kumo.WordCloud;
import com.kennycason.kumo.WordFrequency;
import com.kennycason.kumo.bg.CircleBackground;
import com.kennycason.kumo.font.KumoFont;
import com.kennycason.kumo.font.scale.SqrtFontScalar;
import com.kennycason.kumo.nlp.FrequencyAnalyzer;
import com.kennycason.kumo.nlp.tokenizers.ChineseWordTokenizer;
import com.kennycason.kumo.palette.ColorPalette;
import lombok.SneakyThrows;

import java.awt.*;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class WorkCloudUtil {

    @SneakyThrows
    public static InputStream generateImageStream(Map<String, Integer> wordMap) {
        WordCloud wordCloud = generateWordCloud(wordMap);
        //输出字节流
        ByteArrayOutputStream out =new ByteArrayOutputStream();
        wordCloud.writeToStreamAsPNG(out);
        return new ByteArrayInputStream(out.toByteArray());
    }


    @SneakyThrows
    public static void generateWriteImage(Map<String, Integer> wordMap) {
        WordCloud wordCloud = generateWordCloud(wordMap);
        wordCloud.writeToFile("D:\\chendi\\cd.png");
    }

    public static WordCloud generateWordCloud(Map<String, Integer> wordMap){
        if (wordMap == null || wordMap.size() == 0) {
            return null;
        }
        final FrequencyAnalyzer frequencyAnalyzer = new FrequencyAnalyzer();
        frequencyAnalyzer.setWordFrequenciesToReturn(600);
        frequencyAnalyzer.setMinWordLength(2);
        frequencyAnalyzer.setWordTokenizer(new ChineseWordTokenizer());
        final List<WordFrequency> wordFrequencies = new ArrayList<>();
        for (Map.Entry<String, Integer> entry : wordMap.entrySet()) {
            wordFrequencies.add(new WordFrequency(entry.getKey(), entry.getValue()));
        }
        Font font = FontUtil.getFont("/static/fonts/QingNiaoHuaGuangJianMeiHei-2.ttf");
        //设置图片分辨率
        final Dimension dimension = new Dimension(400, 400);
        //此处的设置采用内置常量即可,生成词云对象
        final WordCloud wordCloud = new WordCloud(dimension, CollisionMode.PIXEL_PERFECT);
        //设置边界及字体
        wordCloud.setPadding(2);
        wordCloud.setBackgroundColor(Color.WHITE);
        //设置背景图层为圆形,设置圆形的大小
        wordCloud.setBackground(new CircleBackground(200));
        //设置词云显示的三种颜色,越靠前设置表示词频越高的词语的颜色
        wordCloud.setColorPalette(new ColorPalette(new Color(0x4055F1), new Color(0x408DF1), new Color(0x40AAF1), new Color(0x40C5F1), new Color(0x40D3F1), new Color(0xFFFFFF)));
        //设置字体的大小
        wordCloud.setFontScalar(new SqrtFontScalar(10, 40));
        wordCloud.setKumoFont(new KumoFont(font));
        wordCloud.build(wordFrequencies);
        //设置背景图片,如果想要固定的形状,就插入这个形状的图片
        //wordCloud.setBackground(new PixelBoundryBackground("E:\\星星/star.jpg"));
        return wordCloud;
    }

}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72

注意

处理中文需要宿主机有中文字体包、如果宿主机不支持中文,请下载一个中文字体包

本文指定使用的就是QingNiaoHuaGuangJianMeiHei-2.ttf字体

百度一下、找不到私信我发你QingNiaoHuaGuangJianMeiHei-2.ttf字体包

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/610068
推荐阅读
相关标签
  

闽ICP备14008679号