赞
踩
表示层 :数据压缩、加密以及数据描述。这使得应用程序不必担心在各台主机中表示/存储的内部格式(二进制、ASCII,比如乱码)不同的问题。
会话层 :建立会话,如session认证、断点续传。通信的应用程序之间建立、维护和释放面向用户的连接。通信的应用程序之间建立会话,需要传输层建立1个或多个连接。(...后台运行的木马,netstat -n)
说明:五层协议没有表示层和会话层,而是将这些功能留给应用程序开发者处理。
在向下的过程中,需要添加下层协议所需要的首部或者尾部,而在向上的过程中不断拆开首部和尾部。
它只有四层,相当于五层协议中数据链路层和物理层合并为网络接口层。
现在的 TCP/IP 体系结构不严格遵循 OSI 分层概念,应用层可能会直接使用 IP 层或者网络接口层。
TCP/IP 协议族是一种沙漏形状,中间小两边大,IP 协议在其中占用举足轻重的地位。
参考资料:
网络层只把分组发送到目的主机,但是真正通信的并不是主机而是主机中的进程。运输层提供了进程间的逻辑通信,运输层向高层用户屏蔽了下面网络层的核心细节,使应用程序看起来像是在两个运输层实体之间有一条端到端的逻辑通信信道。
首部字段只有 8 个字节,包括源端口、目的端口、长度、检验和。12 字节的伪首部是为了计算检验和临时添加的。
参考资料:
假设 A 为客户端,B 为服务器端。
为了防止已失效的连接请求报文段突然又传送到了服务端,占用服务器资源。 (假设主机A为客户端,主机B为服务器端)
现假定出现一种异常情况,即A发出的第一个连接请求报文段并没有丢失,而是在某些网络节点长时间滞留了,以致延误到连接释放以后的某个时间才到B。本来这是一个已失效的报文段。但是B收到此失效的连接请求报文段后,就误认为是A有发出一次新的连接请求。于是就向A发出确认报文段,同意建立连接。假定不采用三次握手,那么只要B发出确认,新的连接就建立了。
由于现在A并没有发出建立连接的请求,因此不会理睬B的确认,也不会向B发送数据。但B却以为新的运输连接已经建立了,并一直等待A发来数据。B的许多资源就这样白白浪费了。
采用三次握手的办法可以防止上述现象的发生。例如在刚才的情况下,A不会向B的确认发出确认。B由于收不到确认,就知道A并没有要求建立连接。
数据传输结束后,通信的双方都可释放连接。现在 A 的应用进程先向其 TCP 发出连接释放报文段,并停止再发送数据,主动关闭 TCP连接。
客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器会发送 FIN 连接释放报文。
MSL是Maximum Segment Lifetime英文的缩写,中文可以译为 “报文最大生存时间”,他是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。2MSL = 2*2mins = 4mins
客户端接收到服务器端的 FIN 报文后进入此状态,此时并不是直接进入 CLOSED 状态,还需要等待一个时间计时器设置的时间 2MSL。这么做有两个理由:
【详细请查阅】:《计算机网络原理 创新教程》P356——8.4节,可靠传输
TCP新手误区--心跳的意义 - CSDN博客 https://blog.csdn.net/bjrxyz/article/details/71076442
窗口是缓存的一部分,用来暂时存放字节流。发送方和接收方各有一个窗口,接收方通过 TCP 报文段中的窗口字段告诉发送方自己的窗口大小,发送方根据这个值和其它信息设置自己的窗口大小。
发送窗口内的字节都允许被发送,接收窗口内的字节都允许被接收。如果发送窗口左部的字节已经发送并且收到了确认,那么就将发送窗口向右滑动一定距离,直到左部第一个字节不是已发送并且已确认的状态;接收窗口的滑动类似,接收窗口左部字节已经发送确认并交付主机,就向右滑动接收窗口。
接收窗口只会对窗口内最后一个按序到达的字节进行确认,例如接收窗口已经收到的字节为 {31, 34, 35},其中 {31} 按序到达,而 {32, 33} 就不是,因此只对字节 31 进行确认。发送方得到一个字节的确认之后,就知道这个字节之前的所有字节都已经被接收。
以下进行滑动窗口模拟
在 TCP 中,滑动窗口是为了实现流量控制。如果对方发送数据过快,接收方就来不及接收,接收方就需要通告对方,减慢数据的发送。
参考资料:
流量控制是为了控制发送方发送速率,保证接收方来得及接收。
接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。
拥塞控制的一般原理
如果网络出现拥塞,分组将会丢失,此时发送方会继续重传,从而导致网络拥塞程度更高。因此当出现拥塞时,应当控制发送方的速率。这一点和流量控制很像,但是出发点不同。流量控制是为了让接收方能来得及接收,而拥塞控制是为了降低整个网络的拥塞程度。
TCP 主要通过四种算法来进行拥塞控制:慢开始、拥塞避免、快重传、快恢复。
发送方需要维护一个叫做拥塞窗口(cwnd)的状态变量,注意拥塞窗口与发送方窗口的区别:拥塞窗口只是一个状态变量,实际决定发送方能发送多少数据的是发送方窗口。
为了便于讨论,做如下假设:
发送的最初执行慢开始,令 cwnd=1,发送方只能发送 1 个报文段;当收到确认后,将 cwnd 加倍,因此之后发送方能够发送的报文段数量为:2、4、8 ...
注意到慢开始每个轮次都将 cwnd 加倍,这样会让 cwnd 增长速度非常快,从而使得发送方发送的速度增长速度过快,网络拥塞的可能也就更高。设置一个慢启动阈值 ssthresh,当 cwnd >= ssthresh 时,进入拥塞避免,每个轮次只将 cwnd 加 1。
如果出现了超时,则令 ssthresh = cwnd/2,然后重新执行慢开始。
在接收方,要求每次接收到报文段都应该对最后一个已收到的有序报文段进行确认。例如已经接收到 M1 和 M2,此时收到 M4,应当发送对 M2 的确认。
在发送方,如果收到三个重复确认,那么可以知道下一个报文段丢失,此时执行快重传,立即重传下一个报文段。例如收到三个 M2,则 M3 丢失,立即重传 M3。
在这种情况下,只是丢失个别报文段,而不是网络拥塞。因此执行快恢复,令 ssthresh = cwnd/2 ,cwnd = ssthresh,注意到此时直接进入拥塞避免。慢开始和快恢复的快慢指的是 cwnd 的设定值,而不是 cwnd 的增长速率。慢开始 cwnd 设定为 1,而快恢复 cwnd 设定为 ssthresh。
发送方的发送窗口的上限值应当取为接收方窗口 rwnd 和拥塞窗口 cwnd 这两个变量中较小的一个,即应按以下公式确定:
拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。
拥塞控制是一个全局性的过程,涉及到所有的主机、所有的路由器,以及与降低网络传输性能有关的所有因素。
流量控制往往指在给定的发送端和接收端之间的点对点通信量的控制。
流量控制所要做的就是抑制发送端发送数据的速率,以便使接收端来得及接收。
流量控制属于通信双方协商;拥塞控制涉及通信链路全局。
流量控制需要通信双方各维护一个发送窗、一个接收窗,对任意一方,接收窗大小由自身决定,发送窗大小由接收方响应的TCP报文段中窗口值确定;拥塞控制的拥塞窗口大小变化由试探性发送一定数据量数据探查网络状况后而自适应调整。
实际最终发送窗口 = min{流控发送窗口,拥塞窗口}。
查询 DNS
浏览器获得域名对应的IP地址后,发起HTTP三次握手
TCP/IP连接建立起来后,浏览器就可以向服务器发送HTTP请求了
TLS 握手
ClientHello
消息到服务器端,消息中同时包含了它的 Transport Layer Security (TLS) 版本,可用的加密算法和压缩算法。ServerHello
消息,消息中包含了服务器端的TLS版本,服务器所选择的加密和压缩算法,以及数字证书认证机构(Certificate Authority,缩写 CA)签发的服务器公开证书,证书中包含了公钥。客户端会使用这个公钥加密接下来的握手过程,直到协商生成一个新的对称密钥Finished
消息给服务器端,使用对称密钥加密这次通讯的一个散列值Finished
消息,也使用协商好的对称密钥加密HTTP 服务器请求处理
HTTPD(HTTP Daemon)在服务器端处理请求/响应。最常见的 HTTPD 有 Linux 上常用的 Apache 和 nginx,以及 Windows 上的 IIS。
HTTPD 接收请求
服务器把请求拆分为以下几个参数:
HTTP 请求方法(GET
, POST
, HEAD
, PUT
, DELETE
, CONNECT
, OPTIONS
, 或者 TRACE
)。直接在地址栏中输入 URL 这种情况下,使用的是 GET 方法域名:google.com请求路径/页面:/ (我们没有请求google.com下的指定的页面,因此 / 是默认的路径)
服务器验证其上已经配置了 google.com 的虚拟主机
服务器验证 google.com 接受 GET 方法
服务器验证该用户可以使用 GET 方法(根据 IP 地址,身份信息等)
如果服务器安装了 URL 重写模块(例如 Apache 的 mod_rewrite 和 IIS 的 URL Rewrite),服务器会尝试匹配重写规则,如果匹配上的话,服务器会按照规则重写这个请求
服务器根据请求信息获取相应的响应内容,这种情况下由于访问路径是 "/" ,会访问首页文件(你可以重写这个规则,但是这个是最常用的)。
服务器会使用指定的处理程序分析处理这个文件,假如 Google 使用 PHP,服务器会使用 PHP 解析 index 文件,并捕获输出,把 PHP 的输出结果返回给请求者
服务器接受到这个请求,根据路径参数,经过后端的一些处理生成HTML页面代码返回给浏览器
浏览器拿到完整的HTML页面代码开始解析和渲染,如果遇到引用的外部js,CSS,图片等静态资源,它们同样也是一个个的HTTP请求,都需要经过上面的步骤
浏览器根据拿到的资源对页面进行渲染,最终把一个完整的页面呈现给用户
超详细版本请转向阅读:what-happens-when-zh_CN
URI 包含 URL 和 URN,目前 WEB 只有 URL 比较流行,所以见到的基本都是 URL。
GET请求
POST请求
200响应
404响应
这一次,让我们再深入一点 - HTTP报文 - 掘金 https://juejin.im/post/5a4f782c5188257326469d7c
服务器返回的 响应报文 中第一行为状态行,包含了状态码以及原因短语,用来告知客户端请求的结果。
状态码 | 类别 | 原因短语 |
---|---|---|
1XX | Informational(信息性状态码) | 接收的请求正在处理 |
2XX | Success(成功状态码) | 请求正常处理完毕 |
3XX | Redirection(重定向状态码) | 需要进行附加操作以完成请求 |
4XX | Client Error(客户端错误状态码) | 服务器无法处理请求 |
5XX | Server Error(服务器错误状态码) | 服务器处理请求出错 |
客户端发送的 请求报文 第一行为请求行,包含了方法字段。
获取资源
当前网络请求中,绝大部分使用的是 GET 方法。
获取报文首部
和 GET 方法一样,但是不返回报文实体主体部分。
主要用于确认 URL 的有效性以及资源更新的日期时间等。
传输实体主体
POST 主要用来传输数据,而 GET 主要用来获取资源。
更多 POST 与 GET 的比较请见第八章。
上传文件
由于自身不带验证机制,任何人都可以上传文件,因此存在安全性问题,一般不使用该方法。
- PUT /new.html HTTP/1.1
- Host: example.com
- Content-type: text/html
- Content-length: 16
-
- <p>New File</p>
对资源进行部分修改
PUT 也可以用于修改资源,但是只能完全替代原始资源,PATCH 允许部分修改。
- PATCH /file.txt HTTP/1.1
- Host: www.example.com
- Content-Type: application/example
- If-Match: "e0023aa4e"
- Content-Length: 100
-
- [description of changes]
删除文件
与 PUT 功能相反,并且同样不带验证机制。
DELETE /file.html HTTP/1.1
查询支持的方法
查询指定的 URL 能够支持的方法。
会返回 Allow: GET, POST, HEAD, OPTIONS 这样的内容。
要求在与代理服务器通信时建立隧道
使用 SSL(Secure Sockets Layer,安全套接层)和 TLS(Transport Layer Security,传输层安全)协议把通信内容加密后经网络隧道传输。
CONNECT www.example.com:443 HTTP/1.1
追踪路径
服务器会将通信路径返回给客户端。
发送请求时,在 Max-Forwards 首部字段中填入数值,每经过一个服务器就会减 1,当数值为 0 时就停止传输。
通常不会使用 TRACE,并且它容易受到 XST 攻击(Cross-Site Tracing,跨站追踪)。
就下面的找几个点和面试官侃侃而谈即可,不可能全部都记得,想到什么讲什么吧
GET 被强制服务器支持
浏览器对URL的长度有限制,所以GET请求不能代替POST请求发送大量数据
GET请求发送数据更小
GET请求是不安全的
GET请求是幂等的
POST请求不能被缓存
POST请求相对GET请求是「安全」的
GET用于信息获取,而且是安全的和幂等的
POST是用于修改服务器上的资源的请求
发送包含未知字符的用户输入时,POST 比 GET 更稳定也更可靠
引申:说完原理性的问题,我们从表面上来看看GET和POST的区别:
- HTTP协议是无状态的(stateless),指的是协议对于事务处理没有记忆能力,服务器不知道客户端是什么状态。也就是说,打开一个服务器上的网页和上一次打开这个服务器上的网页之间没有任何联系。HTTP是一个无状态的面向连接的协议,无状态不代表HTTP不能保持TCP连接,更不能代表HTTP使用的是UDP协议(无连接)。
-
- 缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大。另一方面,在服务器不需要先前信息时它的应答就较快。
在HTTP/1.0中默认使用短连接。也就是说,客户端和服务器每进行一次HTTP操作,就建立一次连接,任务结束就中断连接。当客户端浏览器访问的某个HTML或其他类型的Web页中包含有其他的Web资源(如JavaScript文件、图像文件、CSS文件等),每遇到这样一个Web资源,浏览器就会重新建立一个HTTP会话。
而从HTTP/1.1起,默认使用长连接,用以保持连接特性。使用长连接的HTTP协议,会在响应头加入这行代码:
Connection:keep-alive
在使用长连接的情况下,当一个网页打开完成后,客户端和服务器之间用于传输HTTP数据的TCP连接不会关闭,客户端再次访问这个服务器时,会继续使用这一条已经建立的连接。Keep-Alive不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如Apache)中设定这个时间。实现长连接需要客户端和服务端都支持长连接。
HTTP协议的长连接和短连接,实质上是TCP协议的长连接和短连接。
HTTP 协议是无状态的,主要是为了让 HTTP 协议尽可能简单,使得它能够处理大量事务。HTTP/1.1 引入 Cookie 来保存状态信息。
Cookie 是服务器发送到用户浏览器并保存在本地的一小块数据,它会在浏览器下次向同一服务器再发起请求时被携带并发送到服务器上。它用于告知服务端两个请求是否来自同一浏览器,并保持用户的登录状态。
Cookie 曾一度用于客户端数据的存储,因为当时并没有其它合适的存储办法而作为唯一的存储手段,但现在随着现代浏览器开始支持各种各样的存储方式,Cookie 渐渐被淘汰。由于服务器指定 Cookie 后,浏览器的每次请求都会携带 Cookie 数据,会带来额外的性能开销(尤其是在移动环境下)。新的浏览器 API 已经允许开发者直接将数据存储到本地,如使用 Web storage API (本地存储和会话存储)或 IndexedDB。
服务器发送的响应报文包含 Set-Cookie 首部字段,客户端得到响应报文后把 Cookie 内容保存到浏览器中。
- HTTP/1.0 200 OK
- Content-type: text/html
- Set-Cookie: yummy_cookie=choco
- Set-Cookie: tasty_cookie=strawberry
-
- [page content]
客户端之后对同一个服务器发送请求时,会从浏览器中读出 Cookie 信息通过 Cookie 请求首部字段发送给服务器。
- GET /sample_page.html HTTP/1.1
- Host: www.example.org
- Cookie: yummy_cookie=choco; tasty_cookie=strawberry
Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT;
通过 Document.cookie
属性可创建新的 Cookie,也可通过该属性访问非 HttpOnly 标记的 Cookie。
- document.cookie = "yummy_cookie=choco";
- document.cookie = "tasty_cookie=strawberry";
- console.log(document.cookie);
标记为 Secure 的 Cookie 只应通过被 HTTPS 协议加密过的请求发送给服务端。但即便设置了 Secure 标记,敏感信息也不应该通过 Cookie 传输,因为 Cookie 有其固有的不安全性,Secure 标记也无法提供确实的安全保障。
标记为 HttpOnly 的 Cookie 不能被 JavaScript 脚本调用。因为跨域脚本 (XSS) 攻击常常使用 JavaScript 的 Document.cookie
API 窃取用户的 Cookie 信息,因此使用 HttpOnly 标记可以在一定程度上避免 XSS 攻击。
Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT; Secure; HttpOnly
Domain 标识指定了哪些主机可以接受 Cookie。如果不指定,默认为当前文档的主机(不包含子域名)。如果指定了 Domain,则一般包含子域名。例如,如果设置 Domain=mozilla.org,则 Cookie 也包含在子域名中(如 developer.mozilla.org)。
Path 标识指定了主机下的哪些路径可以接受 Cookie(该 URL 路径必须存在于请求 URL 中)。以字符 %x2F ("/") 作为路径分隔符,子路径也会被匹配。例如,设置 Path=/docs,则以下地址都会匹配:
除了可以将用户信息通过 Cookie 存储在用户浏览器中,也可以利用 Session 存储在服务器端,存储在服务器端的信息更加安全。
Session 可以存储在服务器上的文件、数据库或者内存中,现在最常见的是将 Session 存储在内存型数据库中,比如 Redis。
使用 Session 维护用户登录的过程如下:
应该注意 Session ID 的安全性问题,不能让它被恶意攻击者轻易获取,那么就不能产生一个容易被猜到的 Session ID 值。此外,还需要经常重新生成 Session ID。在对安全性要求极高的场景下,例如转账等操作,除了使用 Session 管理用户状态之外,还需要对用户进行重新验证,比如重新输入密码,或者使用短信验证码等方式。
此时无法使用 Cookie 来保存用户信息,只能使用 Session。除此之外,不能再将 Session ID 存放到 Cookie 中,而是使用 URL 重写技术,将 Session ID 作为 URL 的参数进行传递。
HTTP 有以下安全性问题:
HTTPs(Hyper Text Transfer Protocol over Secure Socket Layer),是以安全为目标的HTTP通道,简单讲是HTTP的安全版。
HTTPs 并不是新协议,而是让 HTTP 先和 SSL(Secure Sockets Layer)通信,再由 SSL 和 TCP 通信。也就是说 HTTPs 使用了隧道进行通信。
通过使用 SSL,HTTPs 具有了加密(防窃听)、认证(防伪装)和完整性保护(防篡改)。
对称密钥加密(Symmetric-Key Encryption),加密和解密使用同一密钥。
非对称密钥加密,又称公开密钥加密(Public-Key Encryption),加密和解密使用不同的密钥。
公开密钥所有人都可以获得,通信发送方获得接收方的公开密钥之后,就可以使用公开密钥进行加密,接收方收到通信内容后使用私有密钥解密。
非对称密钥除了用来加密,还可以用来进行签名。因为私有密钥无法被其他人获取,因此通信发送方使用其私有密钥进行签名,通信接收方使用发送方的公开密钥对签名进行解密,就能判断这个签名是否正确。
HTTPs 采用混合的加密机制,使用非对称密钥加密用于传输对称密钥来保证安全性,之后使用对称密钥加密进行通信来保证效率。
我们知道,HTTP 协议都是明文传输内容,在早期只展示静态内容时没有问题。伴随着互联网的快速发展,人们对于网络传输安全性的要求也越来越高,HTTPS 协议因此出现。如上图所示,在 HTTPS 加密中真正起作用的其实是 SSL/TLS 协议。SSL/TLS 协议作用在 HTTP 协议之下,对于上层应用来说,原来的发送接收数据流程不变,这就很好地兼容了老的 HTTP 协议,这也是软件开发中分层实现的体现。
SSL为Netscape所研发,用以保障在Internet上数据传输之安全,利用数据加密(Encryption)技术,可确保数据在网络上之传输过程中不会被截取,当前为3.0版本。
SSL协议可分为两层: SSL记录协议(SSL Record Protocol):它建立在可靠的传输协议(如TCP)之上,为高层协议提供数据封装、压缩、加密等基本功能的支持。 SSL握手协议(SSL Handshake Protocol):它建立在SSL记录协议之上,用于在实际的数据传输开始前,通讯双方进行身份认证、协商加密算法、交换加密密钥等。
用于两个应用程序之间提供保密性和数据完整性。 TLS 1.0是IETF(Internet Engineering Task Force,Internet工程任务组)制定的一种新的协议,它建立在SSL 3.0协议规范之上,是SSL 3.0的后续版本,可以理解为SSL 3.1,它是写入了 RFC 的。该协议由两层组成: TLS 记录协议(TLS Record)和 TLS 握手协议(TLS Handshake)。较低的层为 TLS 记录协议,位于某个可靠的传输协议(例如 TCP)上面。
SSL/TLS 握手是为了安全地协商出一份对称加密的秘钥,这个过程很有意思,下面我们一起来了解一下。
握手第一步是客户端向服务端发送 Client Hello 消息,这个消息里包含了一个客户端生成的随机数 Random1、客户端支持的加密套件(Support Ciphers)和 SSL Version 等信息。
第二步是服务端向客户端发送 Server Hello 消息,这个消息会从 Client Hello 传过来的 Support Ciphers 里确定一份加密套件,这个套件决定了后续加密和生成摘要时具体使用哪些算法,另外还会生成一份随机数 Random2。注意,至此客户端和服务端都拥有了两个随机数(Random1+ Random2),这两个随机数会在后续生成对称秘钥时用到。
这一步是服务端将自己的证书下发给客户端,让客户端验证自己的身份,客户端验证通过后取出证书中的公钥。
Server Hello Done 通知客户端 Server Hello 过程结束。
上面客户端根据服务器传来的公钥生成了 PreMaster Key,Client Key Exchange 就是将这个 key 传给服务端,服务端再用自己的私钥解出这个 PreMaster Key 得到客户端生成的 Random3。至此,客户端和服务端都拥有 Random1 + Random2 +Random3,两边再根据同样的算法就可以生成一份秘钥,握手结束后的应用层数据都是使用这个秘钥进行对称加密。
为什么要使用三个随机数呢?这是因为 SSL/TLS 握手过程的数据都是明文传输的,并且多个随机数种子来生成秘钥不容易被暴力破解出来。
这一步是客户端通知服务端后面再发送的消息都会使用前面协商出来的秘钥加密了,是一条事件消息。
客户端发送Finished报文。该报文包含连接至今全部报文的整理校验值。这次握手协议是否能成功,要以服务器是否能够正确解密该报文作为判定标准。
服务器同样发送Change Cipher Spec报文给客户端
服务器同样发送Finished报文给客户端
到这里,双方已安全地协商出了同一份秘钥,所有的应用层数据都会用这个秘钥加密后再通过 TCP 进行可靠传输。
最后由客户端断开连接。断开连接时,发送close_notify报文。上图做了一些省略,在这步之后再发送一种叫做MAC(Message Authentication Code)的报文摘要。MAC能够查知报文是否遭到篡改,从而保护报文的完整性。
Certificate Request 是服务端要求客户端上报证书,这一步是可选的,对于安全性要求高的场景会用到。
客户端收到服务端传来的证书后,先从 CA 验证该证书的合法性,验证通过后取出证书中的服务端公钥,再生成一个随机数Random3,再用服务端公钥非对称加密 Random3 生成 PreMaster Key。
参考资料:
HTTPS 是建立在密码学基础之上的一种安全通信协议,严格来说是基于 HTTP 协议和 SSL/TLS 的组合。理解 HTTPS 之前有必要弄清楚一些密码学的相关基础概念,比如:明文、密文、密码、密钥、对称加密、非对称加密、信息摘要、数字签名、数字证书。接下来我会逐个解释这些术语,文章里面提到的『数据』、『消息』都是同一个概念,表示用户之间通信的内容载体,此外文章中提到了以下几个角色:
密码学中的“密码”术语与网站登录时用的密码(password)是不一样的概念,password 翻译过来其实是“口令”,它是用于认证用途的一组文本字符串。
而密码学中的密码(cipher)是一套算法(algorithm),这套算法用于对消息进行加密和解密,从明文到密文的过程称之为加密,密文反过来生成明文称之为解密,加密算法与解密算法合在一起称为密码算法。
密钥(key)是在使用密码算法过程中输入的一段参数。同一个明文在相同的密码算法和不同的密钥计算下会产生不同的密文。很多知名的密码算法都是公开的,密钥才是决定密文是否安全的重要参数,通常密钥越长,破解的难度越大,比如一个8位的密钥最多有256种情况,使用穷举法,能非常轻易的破解。根据密钥的使用方法,密码可分为对称加密和公钥加密。
对称密钥(Symmetric-key algorithm)又称为共享密钥加密,加密和解密使用相同的密钥。常见的对称加密算法有DES、3DES、AES、RC5、RC6。对称密钥的优点是计算速度快,但是它有缺点,接收者需要发送者告知密钥才能解密,因此密钥如何安全的发送给接收者成为了一个问题。
Alice 给 Bob 发送数据时,把数据用对称加密后发送给 Bob,发送过程中由于对数据进行了加密,因此即使有人窃取了数据也没法破解,因为它不知道密钥是什么。但是同样的问题是 Bob 收到数据后也一筹莫展,因为它也不知道密钥是什么,那么 Alice 是不是可以把数据和密钥一同发给 Bob 呢。当然不行,一旦把密钥和密钥一起发送的话,那就跟发送明文没什么区别了,因为一旦有人把密钥和数据同时获取了,密文就破解了。所以对称加密的密钥配是个问题。如何解决呢,公钥加密是一个办法。
公开密钥加密(public-key cryptography)简称公钥加密,这套密码算法包含配对的密钥对,分为加密密钥和解密密钥。发送者用加密密钥进行加密,接收者用解密密钥进行解密。加密密钥是公开的,任何人都可以获取,因此加密密钥又称为公钥(public key),解密密钥不能公开,只能自己使用,因此它又称为私钥(private key)。常见的公钥加密算法有 RSA。
还是以Alice 给 Bob 发送数据为例,公钥加密算法由接收者 Bob 发起
虽然公钥加密解决了密钥配送的问题,但是你没法确认公钥是不是合法的,Bob 发送的公钥你不能肯定真的是 Bob 发的,因为也有可能在 Bob 把公钥发送给 Alice 的过程中出现中间人攻击,把真实的公钥掉包替换。而对于 Alice 来说完全不知。还有一个缺点是它的运行速度比对称加密慢很多。
消息摘要(message digest)函数是一种用于判断数据完整性的算法,也称为散列函数或哈希函数,函数返回的值叫散列值,散列值又称为消息摘要或者指纹(fingerprint)。这种算法是一个不可逆的算法,因此你没法通过消息摘要反向推倒出消息是什么。所以它也称为单向散列函数。下载软件时如何确定是官方提供的完整版呢,如果有中间人在软件里面嵌入了病毒,你也不得而知。所以我们可以使用散列函数对消息进行运算,生成散列值,通常软件提供方会同时提供软件的下载地址和软件的散列值,用户把软件下载后在本地用相同的散列算法计算出散列值,与官方提供的散列值对比,如果相同,说明该软件是完成的,否则就是被人修改过了。常用的散列算法有MD5、SHA。
下载 Eclipse 时,官方网站同时提供了软件地址和消息摘要
散列函数可以保证数据的完整性,识别出数据是否被篡改,但它并不能识别出数据是不是伪装的,因为中间人可以把数据和消息摘要同时替换,数据虽然是完整的,但真实数据被掉包了,接收者收到的并不是发送者发的,而是中间人的。消息认证是解决数据真实性的办法。认证使用的技术有消息认证码和数字签名。
消息认证码(message authentication code)是一种可以确认消息完整性并进行认证(消息认证是指确认消息来自正确的发送者)的技术,简称 MAC。消息认证码可以简单理解为一种与密钥相关的单向散列函数。
Alice 给 Bob 发送消息前,先把共享密钥(key)发送给 Bob,Alice 把消息计算出 MAC 值,连同消息一起发送给 Bob,Bob 接收到消息和 MAC 值后,与本地计算得到 MAC 值对比,如果两者相同,就说明消息是完整的,而且可以确定是 Alice 发送的,没有中间人伪造。不过,消息认证码同样会遇到对称加密的密钥配送问题,因此解决密钥配送问题还是要采用公钥加密的方式。
此外,消息认证码还有一个无法解决的问题,Bob 虽然可以识别出消息的篡改和伪装,但是 Alice 可以否认说:“我没发消息,应该是 Bob 的密钥被 Attacker 盗取了,这是 Attacker 发的吧”。Alice 这么说你还真没什么可以反驳的,那么如何防止 Alice 不承认呢,数字签名可以实现。
Alice 发邮件找 Bob 借1万钱,因为邮件可以被人篡改(改成10万),也可以被伪造(Alice 根本就没发邮件,而是 Attacker 伪造 Alice 在发邮件),Alice 借了钱之后还可以不承认(不是我借的,我没有签名啊)。
消息认证码可以解决篡改和伪造的问题,Alice 不承认自己借了钱时,Bob 去找第三方机构做公正,即使这样,公正方也没法判断 Alice 有没有真的借钱,因为他们俩共享了密钥,也就是说两个都可以计算出正确的 MAC 值,Bob 说:“明明你发的消息和 MAC 值和我自己生成的 MAC 值一样,肯定是你发的消息”,Alice 说:“你把密钥透露给了其他人,是他发的邮件,你找他去吧”。Alice 矢口否认。
数字签名(Digital Signature)就可以解决否认的问题,发送消息时,Alice 和 Bob 使用不同的密钥,把公钥加密算法反过来使用,发送者 Alice 使用私钥对消息进行签名,而且只能是拥有私钥的 Alice 可以对消息签名,Bob 用配对的公钥去验证签名,第三方机构也可以用公钥验证签名,如果验证通过,说明消息一定是 Alice 发送的,抵赖也不行,因为你只有 Alice 可以生成签名。这就防止了否认的问题。
它的流程是:
第一步:发送者 Alice 把消息哈希函数处理生成消息摘要,摘要信息使用私钥加密之后生成签名,连同消息一起发送给接收者 Bob。
第二步:数据经过网络传输,Bob收到数据后,把签名和消息分别提取出来。
第三步:对签名进行验证,验证的过程是先把消息提取出来做同样的Hash处理,得到消息摘要,再与 Alice 传过来的签名用公钥解密,如果两者相等,就表示签名验证成功,否则验证失败,表示不是 Alice发的。
公钥密码在数字签名技术里面扮演举足轻重的角色,但是如何保证公钥是合法的呢,如果是遭到中间人攻击,掉包怎么办?这个时候公钥就应该交给一个第三方权威机构来管理,这个机构就是认证机构(Certification Authority)CA,CA 把用户的姓名、组织、邮箱地址等个人信息收集起来,还有此人的公钥,并由 CA 提供数字签名生成公钥证书(Public-Key Certificate)PKC,简称证书。
Alice 向 Bob 发送消息时,是通过 Bob 提供的公钥加密后的数据,而 Alice 获取的公钥并不是由 Bob 直接给的,而是由委托一个受信任的第三方机构给的。
至此,一套比较完善的数据传输方案就完成了。HTTPS(SSL/TLS)就是在这样一套流程基础之上建立起来的。
参考资料:
HTTP/2的通过支持请求与响应的多路复用来减少延迟,通过压缩HTTP首部字段将协议开销降至最低,同时增加对请求优先级和服务器端推送的支持。
先来理解几个概念:
帧:HTTP/2 数据通信的最小单位消息:指 HTTP/2 中逻辑上的 HTTP 消息。例如请求和响应等,消息由一个或多个帧组成。
流:存在于连接中的一个虚拟通道。流可以承载双向消息,每个流都有一个唯一的整数ID。
HTTP/2 采用二进制格式传输数据,而非 HTTP 1.x 的文本格式,二进制协议解析起来更高效。 HTTP / 1 的请求和响应报文,都是由起始行,首部和实体正文(可选)组成,各部分之间以文本换行符分隔。HTTP/2 将请求和响应数据分割为更小的帧,并且它们采用二进制编码。
**HTTP/2 中,同域名下所有通信都在单个连接上完成,该连接可以承载任意数量的双向数据流。**每个数据流都以消息的形式发送,而消息又由一个或多个帧组成。多个帧之间可以乱序发送,根据帧首部的流标识可以重新组装。
多路复用,代替原来的序列和阻塞机制。所有就是请求的都是通过一个 TCP连接并发完成。 HTTP 1.x 中,如果想并发多个请求,必须使用多个 TCP 链接,且浏览器为了控制资源,还会对单个域名有 6-8个的TCP链接请求限制,如下图,红色圈出来的请求就因域名链接数已超过限制,而被挂起等待了一段时间。
在 HTTP/2 中,有了二进制分帧之后,HTTP /2 不再依赖 TCP 链接去实现多流并行了,在 HTTP/2中:
这一特性,使性能有了极大提升:
服务端可以在发送页面HTML时主动推送其它资源,而不用等到浏览器解析到相应位置,发起请求再响应。例如服务端可以主动把JS和CSS文件推送给客户端,而不需要客户端解析HTML时再发送这些请求。
服务端可以主动推送,客户端也有权利选择是否接收。如果服务端推送的资源已经被浏览器缓存过,浏览器可以通过发送RST_STREAM帧来拒收。主动推送也遵守同源策略,服务器不会随便推送第三方资源给客户端。
HTTP 1.1请求的大小变得越来越大,有时甚至会大于TCP窗口的初始大小,因为它们需要等待带着ACK的响应回来以后才能继续被发送。HTTP/2对消息头采用HPACK(专为http/2头部设计的压缩格式)进行压缩传输,能够节省消息头占用的网络的流量。而HTTP/1.x每次请求,都会携带大量冗余头信息,浪费了很多带宽资源。
参考资料:
ARP协议:
将IP地址通过广播 目标MAC地址是FF-FF-FF-FF-FF-FF 解析目标IP地址的MAC地址 扫描本网段MAC地址。
DHCP协议:
DHCP租约过程就是DHCP客户机动态获取IP地址的过程。
DHCP租约过程分为4步:
客户机请求IP(客户机发DHCPDISCOVER广播包);
服务器响应(服务器发DHCPOFFER广播包);
客户机选择IP(客户机发DHCPREQUEST广播包);
服务器确定租约(服务器发DHCPACK/DHCPNAK广播包)。
参考资料:
交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。IP地址是在软件中实现的,描述的是设备所在的网络,有时这些第三层的地址也称为协议地址或者网络地址。MAC地址通常是硬件自带的,由网卡生产商来分配的,而且已经固化到了网卡中去,一般来说是不可更改的。而IP地址则通常由网络管理员或系统自动分配。
路由器和交换机的区别一:交换机是一根网线上网,但是大家上网是分别拨号,各自使用自己的宽带,大家上网没有影响。而路由器比交换机多了一个虚拟拨号功能,通过同一台路由器上网的电脑是共用一个宽带账号,大家上网要相互影响。 路由器和交换机的区别二:交换机工作在中继层,交换机根据MAC地址寻址。路由器工作在网络层,根据IP地址寻址,路由器可以处理TCP/IP协议,而交换机不可以。
路由器和交换机的区别三:交换机可以使连接它的多台电脑组成局域网,如果还有代理服务器的话还可以实现同时上网功能而且局域网所有电脑是共享它的带宽速率的,但是交换机没有路由器的自动识别数据包发送和到达地址的功能。路由器可以自动识别数据包发送和到达的地址,路由器相当于马路上的警察,负责交通疏导和指路的。
路由器和交换机的区别四:举几个例子,路由器是小邮局,就一个地址(IP),负责一个地方的收发(个人电脑,某个服务器,所以你家上网要这个东西),交换机是省里的大邮政中心,负责由一个地址给各个小地方的联系。简单的说路由器专管入网,交换机只管配送,路由路由就是给你找路让你上网的,交换机只负责开门,交换机上面要没有路由你是上不了网的。
路由器和交换机的区别五:路由器提供了防火墙的服务。路由器仅仅转发特定地址的数据包,不传送不支持路由协议的数据包传送和未知目标网络数据包的传送,从而可以防止广播风暴。
内网中192.168.1.199的前三组是网络号,后一组是主机号,子网掩码就是255.255.255.0
首先要说明的是:不是某个IP的网络号和主机号决定子网掩码是什么,而是子网掩码决定了某个IP地址的网络号与主机号是什么,IP地址是要搭配子网掩码使用的。例如上面的子网掩码决定了192.168.1.199的前三段192.168.1是网络号,最后一段199是主机号。
我们再来理解子网掩码的作用,先举个例子,市面上的两个厂家都生产电子秤,每个厂家都坚称他们的秤最准,那你是怎么知道他们的秤到底准不准?很简单,你去找一个 1KG 的国际千克原器,各放到他们的秤上测量,如果秤的测量值是1KG,那这把秤就是准的,子网掩码的作用就相当于这个大家公认的国际千克原器,是我们测量两个IP是否属于同一个网段的一个工具(应该说是让你知道某个IP地址的网络号与主机号分别是什么) 。
如果让你判断一个IP地址:192.168.1.199的网络号和主机号分别是什么?
请问你怎么判断?你凭什么说192.168.1是网络号?199是主机号?有什么根据吗?
但是如果我给你一个IP地址是以下(带子网掩码)形式的:
IP:192.168.1.199
子网掩码:255.255.255.0
那么根据大家公认的规则,你就可以得出这个IP的网络号和主机号了,怎么算呢?
子网掩码的长度和IP地址一样也是一串32位的二进制数字,只不过为人类的可读性和记忆性的方便,通常使用十进制数字来表示,例如把上面的IP地址和子网掩码都转换成相应的二进制就是下面这样的:
**十进制** **二进制**
IP 地址:192.168.1.199 ‐>11000000.10101000.00000001.11000111
子网掩码:255.255.255.0 ‐>11111111.11111111.11111111.00000000
十进制的显示形式是给人看的,二进制的显示形式是给计算机看的。。。
子网掩码的左边是网络位,用二进制数字“1”表示,1的数目等于网络位的长度;右边是主机位,用二进制数字“0”表示,0的数目等于主机位的长度。
例如上面的子网掩码255.255.255.0的 “1”的个数是左边24位,则对应IP地址左边的位数也是24位;
**十进制** **二进制**
IP 地址:192.168.1.199 ‐>11000000.10101000.00000001.11000111
子网掩码:255.255.255.0 ‐>11111111.11111111.11111111.00000000
则这个IP地址的网络号就是11000000.10101000.00000001 ,转换成十进制就是 192.168.1,网掩码255.255.255.0的 “0”的个数是右边8位,则这个IP地址的主机号就是11000111,转换成十进制就是199.
tips:
其实归根结底,XSS的攻击方式就是想办法“教唆”用户的浏览器去执行一些这个网页中原本不存在的前端代码。
可问题在于尽管一个信息框突然弹出来并不怎么友好,但也不至于会造成什么真实伤害啊。的确如此,但要说明的是,这里拿信息框说事仅仅是为了举个栗子,真正的黑客攻击在XSS中除非恶作剧,不然是不会在恶意植入代码中写上alert(“say something”)的。
在真正的应用中,XSS攻击可以干的事情还有很多,这里举两个例子。
在网页浏览中我们常常涉及到用户登录,登录完毕之后服务端会返回一个cookie值。这个cookie值相当于一个令牌,拿着这张令牌就等同于证明了你是某个用户。
如果你的cookie值被窃取,那么攻击者很可能能够直接利用你的这张令牌不用密码就登录你的账户。如果想要通过script脚本获得当前页面的cookie值,通常会用到document.cookie。
试想下如果像空间说说中能够写入xss攻击语句,那岂不是看了你说说的人的号你都可以登录(不过某些厂商的cookie有其他验证措施如:Http-Only保证同一cookie不能被滥用)
这个很简单,就是在网页中想办法插入一句像这样的语句:
<script>window.location.href="http://www.baidu.com";</script>
那么所访问的网站就会被跳转到百度的首页。
早在2011年新浪就曾爆出过严重的xss漏洞,导致大量用户自动关注某个微博号并自动转发某条微博。具体各位可以自行百度。
(1)反射型XSS
又称为非持久性跨站点脚本攻击,它是最常见的类型的XSS。漏洞产生的原因是攻击者注入的数据反映在响应中。一个典型的非持久性XSS包含一个带XSS攻击向量的链接(即每次攻击需要用户的点击)。
简单例子
正常发送消息:http://www.test.com/message.php?send=Hello,World!
接收者将会接收信息并显示Hello,Word
非正常发送消息:http://www.test.com/message.php?send=<script>alert(‘foolish!’)</script>!
接收者接收消息显示的时候将会弹出警告窗口
(2)持久型XSS
又称为持久型跨站点脚本,它一般发生在XSS攻击向量(一般指XSS攻击代码)存储在网站数据库,当一个页面被用户打开的时候执行。每当用户打开浏览器,脚本执行。持久的XSS相比非持久性XSS攻击危害性更大,因为每当用户打开页面,查看内容时脚本将自动执行。谷歌的orkut曾经就遭受到XSS。
简单例子:
从名字就可了解到存储型XSS攻击就是将攻击代码存入数据库中,然后客户端打开时就执行这些攻击代码。例如留言板
留言板表单中的表单域:<input type=“text” name=“content” value=“这里是用户填写的数据”>
**正常操作:**用户是提交相应留言信息;将数据存储到数据库;其他用户访问留言板,应用去数据并显示。
**非正常操作:**攻击者在value填写<script>alert(‘foolish!’)</script>
【或者html其他标签(破坏样式。。。)、一段攻击型代码】;将数据存储到数据库中;其他用户取出数据显示的时候,将会执行这些攻击性代码
(3)DOM-based XSS
基于DOM的XSS,通过对具体DOM代码进行分析,根据实际情况构造dom节点进行XSS跨站脚本攻击。
注:domxss取决于输出位置,并不取决于输出环境,因此domxss既有可能是反射型的,也有可能是存储型的。dom-based与非dom-based,反射和存储是两个不同的分类标准。
记住一句至理名言——“所有用户输入都是不可信的。”(注意: 攻击代码不一定在<script></script>中)
使用XSS Filter
使用 HttpOnly Cookie
将重要的cookie标记为httponly,这样的话当浏览器向Web服务器发起请求的时就会带上cookie
字段,但是在js
脚本中却不能访问这个cookie,这样就避免了XSS攻击利用JavaScript
的document.cookie
获取cookie
。
真正麻烦的是,在一些场合我们要允许用户输入HTML,又要过滤其中的脚本。这就要求我们对代码小心地进行转义。否则,我们可能既获取不了用户的正确输入,又被XSS攻击。 幸好,由于XSS臭名昭著历史悠久又极其危险,现代web开发框架如vue.js
、react.js
等,在设计的时候就考虑了XSS攻击对html插值进行了更进一步的抽象、过滤和转义,我们只要熟练正确地使用他们,就可以在大部分情况下避免XSS攻击。 同时,许多基于MVVM
框架的SPA
(单页应用)不需要刷新URL来控制view,这样大大防止了XSS隐患。另外,我们还可以用一些防火墙来阻止XSS的运行。
参考资料:
跨站请求伪造(英语:Cross-site request forgery),维基百科的解释是一种挟制用户在当前已登录的Web应用程序上执行非本意的操作的攻击方法,听起来很厉害的样子。
简单来说,攻击者利用一些技术手段去欺骗用户浏览器去访问一些曾经认证过的网站而执行一些操作。由于认证过,所以浏览器认为是用户的本意。
其实咋们可以简单理解为虎符调兵
,正常是大将军颁发虎符才能调兵,但是军队只认虎符不认人,假如奸臣偷取虎符假传命令私自调兵造反,那可就大事不好!
例如 localhost/deleteAriticle.php?id=3&username=xiaoxiao
,攻击者在被攻击的网站页面嵌入这样的代码,当用户xiaoxiao访问该网站的时候,会发起这条请求。服务器会删除id为3的数据。 客户端防范:对于数据库的修改请求,全部使用POST提交,禁止使用GET请求。 服务器端防范:一般的做法是在表单里面添加一段隐藏的唯一的token(请求令牌)。
那我们具体看看攻击细节
看图说话,大致过程
再次访问正常网站时,浏览器会自动带上标识该用户身份的cookie发送请求,所以正常网站服务器会接受来自恶意网站的请求,从而完成攻击。
当我访问登录一个正常网站,成功访问后服务器会产生一个标识用户身份的cookie给用户的浏览器保存,在标识cookie还存在时访问恶意网站,在该网站里攻击者会让你不知不觉的访问之前的正常网站并且执行一些操作,由于标识用户身份的cookie还存在,所以用户浏览器认为是用户的本意操作而执行该请求,从而攻击成功。
这些欺骗的访问方式有很多,例如“点击小广告、找回密码”等等诱导用户去点击操作。
目前预防方式有二种:
HTTP请求head里有个Referer字段,用于表明请求的来源地址。正常情况下,Referer字段和请求的地址是位于同一域名下的,如果是CSRF攻击发起的请求,那么Referer字段和请求的地址就不是同一域名了,那么服务器就能识别出恶意访问。
这个方法缺点是攻击者有可能篡改该Referer字段内容,从而欺骗服务器。
当用户正常访问网站时,服务器会生产一个随机数,并且把该随机数埋入该页面里(一般放在form表单,<input type="hidden" name="_csrf_token" value="xxxx">
)。正常访问,客户的浏览器是能够得到并且返回该字段,而CSRF一开始是不知道该字段的数值,服务器接受请求发现该字段的异常,从而拒绝该请求。
xss原理上利用的是浏览器可以拼接成任意的javascript,然后黑客拼接好javascript让浏览器自动地给服务器端发出多个请求(get、post请求)。 csrf原理上利用的是网站服务器端所有参数都是可预先构造的原理,然后黑客拼接好具体请求url,可以引诱你提交他构造好的请求。
参考资料:
所谓SQL注入,是将客户机提交或Web表单递交的数据,拼接成SQL语句字符串时。如果客户端提交的数据有非法字符或SQL语句关键字时,会造成执行的SQL语句语法错误,或执行结果不正确的情况。通过SQL注入,黑客可以最终达到欺骗服务器,执行恶意的SQL语句,甚至破坏数据库结构的目的。
SQL注入攻击大多是利用设计上的漏洞,在目标服务器上运行Sql语句的攻击方式。开发者在动态生成Sql语句时,没有对用户输入的数据进行验证,是Sql注入攻击得逞的主要原因。
在Java中,是使用JDBC和数据库建立连接,并执行SQL语句,和数据库进行数据交互的。
JDBC在执行SQL语句操作时,提供了 Statement、PreparedStatement 和 CallableStatement 三种方式来执行SQL语句。其中 Statement 用于通用查询, PreparedStatement 用于执行参数化查询,而 CallableStatement则是用于存储过程。 在三个接口中,Statement是PreparedStatement和CallableStatement的父接口。Statement在执行SQL语句时,对于客户端提交的数据只支持拼接SQL语句的方式。
String sql = "select * from t_user where userName='" + name + "' and password='" + password + "'";
所以,使用Statement在执行SQL语句,容易引起SQL注入。PreparedStatement在执行参数化查询时,支持占位符方式。
String sql = "select * from t_user where userName=? and password=?"; PreparedStatement ps = conn.prepareStatement(sql); ps.setString(1,name); ps.setString(2,password);
在使用参数化查询的情况下,数据库系统不会将参数的内容,视为SQL指令的一部分来处理。而是在数据库完成SQL指令的编译后,才套用参数运行。因此,就算参数中含有破坏性的指令,也不会被数据库所运行。所以,使用PreparedStatement的参数化查询可以有效的阻止SQL注入。
另外,PreparedStatement相比Statement还有以下几个优势
可以预编译SQL语句,多次查询时速度快。
防止数据库缓冲区溢出
代码的可读性可维护性好
由于有以上优点,所以,在开发JDBC时,PreparedStatement成为访问数据库的语句对象的首选。
举个形象的例子:
DDOS是Distributed Denial of Service的缩写,翻译成中文是“分布式拒绝服务“攻击,网络中的DDOS攻击与防御与上面例子所述差不多,DDOS只不过是一个概称,其下有各种攻击方式,比如“CC攻击、SYN攻击、NTP攻击、TCP攻击、DNS攻击等等”,现在DDOS发展变得越来越可怕,NTP攻击渐渐成为主流了,这意味着可以将每秒的攻击流量放大几百倍,比如每秒1G的SYN碎片攻击换成NTP放大攻击,就成为了200G或者更多。
这是一种利用TCP协议缺陷,发送大量伪造的TCP连接请求,从而使得被攻击方资源耗尽(CPU满负荷或内存不足)的攻击方式。建立TCP连接,需要三次握手——客户端发送SYN报文,服务端收到请求并返回报文表示接受,客户端也返回确认,完成连接。
SYN Flood 就是用户向服务器发送报文后突然死机或掉线,那么服务器在发出应答报文后就无法收到客户端的确认报文(第三次握手无法完成),这时服务器端一般会重试并等待一段时间后再丢弃这个未完成的连接。一个用户出现异常导致服务器的一个线程等待一会儿并不是大问题,但恶意攻击者大量模拟这种情况,服务器端为了维护数以万计的半连接而消耗非常多的资源,结果往往是无暇理睬客户的正常请求,甚至崩溃。从正常客户的角度看来,网站失去了响应,无法访问。
CC攻击是目前应用层攻击的主要手段之一,借助代理服务器生成指向目标系统的合法请求,实现伪装和DDoS。我们都有这样的体验,访问一个静态页面,即使人多也不需要太长时间,但如果在高峰期访问论坛、贴吧等,那就很慢了,因为服务器系统需要到数据库中判断访问者否有读帖、发言等权限。访问的人越多,论坛的页面越多,数据库压力就越大,被访问的频率也越高,占用的系统资源也就相当可观。
CC攻击就充分利用了这个特点,模拟多个正常用户不停地访问如论坛这些需要大量数据操作的页面,造成服务器资源的浪费,CPU长时间处于100%,永远都有处理不完的请求,网络拥塞,正常访问被中止。这种攻击技术性含量高,见不到真实源IP,见不到特别大的异常流量,但服务器就是无法进行正常连接。
之所以选择代理服务器是因为代理可以有效地隐藏自己的身份,也可以绕开防火墙,因为基本上所有的防火墙都会检测并发的TCP/IP连接数目,超过一定数目一定频率就会被认为是Connection-Flood。当然也可以使用肉鸡来发动CC攻击,攻击者使用CC攻击软件控制大量肉鸡发动攻击,肉鸡可以模拟正常用户访问网站的请求伪造成合法数据包,相比前者来说更难防御。
CC攻击是针对Web服务在第七层协议发起的攻击,在越上层协议上发动DDoS攻击越难以防御,上层协议与业务关联愈加紧密,防御系统面临的情况也会更复杂。比如CC攻击中最重要的方式之一HTTP Flood,不仅会直接导致被攻击的Web前端响应缓慢,对承载的业务造成致命的影响,还可能会引起连锁反应,间接攻击到后端的Java等业务层逻辑以及更后端的数据库服务。
由于CC攻击成本低、威力大,知道创宇安全专家组发现80%的DDoS攻击都是CC攻击。带宽资源严重被消耗,网站瘫痪;CPU、内存利用率飙升,主机瘫痪;瞬间快速打击,无法快速响应。
NTP是标准的基于UDP协议传输的网络时间同步协议,由于UDP协议的无连接性,方便伪造源地址。攻击者使用特殊的数据包,也就是IP地址指向作为反射器的服务器,源IP地址被伪造成攻击目标的IP,反射器接收到数据包时就被骗了,会将响应数据发送给被攻击目标,耗尽目标网络的带宽资源。一般的NTP服务器都有很大的带宽,攻击者可能只需要1Mbps的上传带宽欺骗NTP服务器,就可给目标服务器带来几百上千Mbps的攻击流量。
因此,“问-答”方式的协议都可以被反射型攻击利用,将质询数据包的地址伪造为攻击目标地址,应答的数据包就会都被发送至目标,一旦协议具有递归效果,流量就被显著放大了,堪称一种“借刀杀人”的流量型攻击。
没有根治的办法,除非不用TCP/IP链接
泪滴攻击(TearDrop) 指的是向目标机器发送损坏的IP包,诸如重叠的包或过大的包载荷。借由这些手段,该攻击可以通过TCP/IP协议栈中分片重组代码中的bug来瘫痪各种不同的操作系统。
泪滴攻击是拒绝服务攻击的一种。 泪滴是一个特殊构造的应用程序,通过发送伪造的相互重叠的IP分组数据包,使其难以被接收主机重新组合。他们通常会导致目标主机内核失措。 泪滴攻击利用IP分组数据包重叠造成TCP/ IP分片重组代码不能恰当处理IP包。 泪滴攻击不被认为是一个严重的DOS攻击,不会对主机系统造成重大损失。 在大多数情况下,一次简单的重新启动是最好的解决办法,但重新启动操作系统可能导致正在运行的应用程序中未保存的数据丢失。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。