赞
踩
pd = fitdist(x,distname)
对数据进行概率分布对象拟合/Fit probability distribution object to data
注意只限于一维
x: N*1
同ksdensity()
注意:同样限于一维
bw选择方法
MISE准则
MISE准则 matlab自写code
wikipedia page中详细(见下)
4.
\color{blue}{4.}
4.
1-dimensional data: kernel dis方式
SixMPG = [13;15;23;29;32;34]; figure histogram(SixMPG) %kde拟合得到kernel distribution pd_kernel = fitdist(data,'Kernel','BandWidth',4); %or pd_kernel = fitdist(x,'Kernel','Kernel','epanechnikov') %Define the x values and compute the pdf of each distribution. x = 50:1:250; pdf_kernel = pdf(pd_kernel,x); %Plot the pdf of each distribution. plot(x, pdf_kernel, 'Color','b','LineWidth',2); legend('Kernel Dis') %附录:Kernel- Kernel smoother type % normal, box, triangle, epanechnikov
1-dimensional data:ksdensity方式
SixMPG = [13 5 3;15 8 5;12 5 6];
x=[1 6;3 8;3 10;2 8];
x1=[11 2;7 3;1 8;9 8];
x=[1 6 9];
[f,xi] = ksdensity(SixMPG,x,'Bandwidth',4);
[f_1,xi_1,bw_1] = ksdensity(SixMPG);
[f_2,xi_2,bw_2] = ksdensity(SixMPG,x1);
5.
\color{red}{5.}
5.
adaptive Kernel Density Estimator for High Dimensions 直接.m函数使用,无需按照mex这些鬼
记录一些快速回顾使用方式
%说明:grid:带进去compute pdf的points; Example中为了plot,所以grid费了一定功夫
%要求:data:Nd grid:Md
%pdf=akde(data,grid); % run adaptive kde
6
老
师
分
享
\color{red}{6\ \ 老师分享}
6 老师分享
可多维kde
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。