当前位置:   article > 正文

matlab画二项式随机变量的pmf,概率中的PDF,PMF,CDF

matlabpdf和probability区别

一. 概念解释

PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。

PMF : 概率质量函数(probability mass function), 在概率论中,概率质量函数是离散随机变量在各特定取值上的概率。

CDF : 累积分布函数 (cumulative distribution function),又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。

二. 数学表示

PDF:如果XX是连续型随机变量,定义概率密度函数为fX(x)fX(x),用PDF在某一区间上的积分来刻画随机变量落在这个区间中的概率,即

Pr(a≤X≤b)=∫bafX(x)dxPr(a≤X≤b)=∫abfX(x)dx

PMF:如果XX离散型随机变量,定义概率质量函数为fX(x)fX(x),PMF其实就是高中所学的离散型随机变量的分布律,即

fX(x)=Pr(X=x)fX(x)=Pr(X=x)

比如对于掷一枚均匀硬币,如果正面令X=1X=1,如果反面令X=0X=0,那么它的PMF就是

fX(x)={12 if x∈{0,1}0 if x∉{0,1}fX(x)={12 if x∈{0,1}0 if x∉{0,1}

CDF:不管是什么类型(连续/离散/其他)的随机变量,都可以定义它的累积分布函数,有时简称为分布函数。

对于连续型随机变量,显然有FX(x

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/67170
推荐阅读
相关标签
  

闽ICP备14008679号