当前位置:   article > 正文

【yolov10】使用自己的数据集训练目标检测模型_yolov10训练

yolov10训练

一、anaconda安装

直接参考前一篇博客:
https://blog.csdn.net/m0_71523511/article/details/136546588

pycharm开发环境参考:
https://www.bilibili.com/video/BV1Cr4y1u76N/?p=3&spm_id_from=pageDriver&vd_source=2a10d30b8351190ea06d85c5d0bfcb2a

二、环境配置

官方给出的环境配置使用的torch版本是2.0.1,我电脑最高也就支持到1.11.0,所以就没法用gpu来训练了,当然也可以用自己的可以使用gpu训练的环境来训练yolov10,就是会有一些依赖报错,根据提示进行修改试试。
打开anaconda命令行:
在这里插入图片描述

conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .
  • 1
  • 2
  • 3
  • 4

三、数据集制作

1、labelimg的安装

首先打开cmd命令行(快捷键:win+R)。进入cmd命令行控制台。输入如下的命令:`

pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 1

2、使用labelimg`

①搜索labelimg

在这里插入图片描述

②设置

在这里插入图片描述
格式选择yolo,然后点击open dir,选择存放待打标图片的文件夹,点击change save dir来更改保存标签的文件夹。

③打标

常用快捷键如下:

A:切换到上一张图片

D:切换到下一张图片

W:调出标注十字架

del :删除标注框框

Ctrl+u:选择标注的图片文件夹

Ctrl+r:选择标注好的label标签存在的文件夹
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

在这里插入图片描述
这样标注完之后可以在保存标签的目录看到yolo格式的标签,它会自己生成一个类别文件:
在这里插入图片描述

四、正片

1、下载yolov10源码

https://github.com/THU-MIG/yolov10
解压后目录如下:
在这里插入图片描述

2、数据集目录

将前面打标好的数据集以下面这种目录格式放置,并新建data.yaml文件:
在这里插入图片描述
data.yaml文件如下:
names根据自己数据集的标签来,train和val就是训练集和验证集的图片路径

train: C:/new_pycharm_project/yolov10-main/datasets/Data/train/images
val: C:/new_pycharm_project/yolov10-main/datasets/Data/val/images


# Classes
nc: 3  # number of classes
names: ['person', 'hat', 'one']  # class names
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

3、训练

在数据集的同级目录下新建一个train.py文件:

from ultralytics import YOLOv10

model_yaml_path = "ultralytics/cfg/models/v10/yolov10s.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolov10s.pt'

if __name__ == '__main__':
    #加载预训练模型
    model = YOLOv10(model_yaml_path).load(pre_model_name)
    #训练模型
    results = model.train(data=data_yaml_path,
                          epochs=150,
                          batch=4,
                          name='train_v10')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

到以下网址下载s版本的预训练模型,并将此pt模型放置到与train.py的同级目录下:
https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10s.pt

右击开始训练:
在这里插入图片描述
等待训练结束之后可以在runs目录下找到权重文件:
在这里插入图片描述

4、推理

在数据集的同级目录下新建一个infer.py文件,并放置一张待检测的图片名字为infer.jpg:

from ultralytics import YOLOv10

model = YOLOv10("runs/detect/train_v10/weights/best.pt")

results = model.predict("infer.jpg")

results[0].show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

运行结果如下:
在这里插入图片描述
在这里插入图片描述
可以看出来推理时间很长,我这里只训练了一轮所以效果不好。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/674665
推荐阅读
相关标签
  

闽ICP备14008679号