当前位置:   article > 正文

Nezzar and Colorful Balls

nezzar and colorful balls

题目:
Nezzar has n balls, numbered with integers 1,2,…,n. Numbers a1,a2,…,an are written on them, respectively. Numbers on those balls form a non-decreasing sequence, which means that ai≤ai+1 for all 1≤i<n.

Nezzar wants to color the balls using the minimum number of colors, such that the following holds.

For any color, numbers on balls will form a strictly increasing sequence if he keeps balls with this chosen color and discards all other balls.
Note that a sequence with the length at most 1 is considered as a strictly increasing sequence.

Please help Nezzar determine the minimum number of colors.

Input
The first line contains a single integer t (1≤t≤100) — the number of testcases.

The first line of each test case contains a single integer n (1≤n≤100).

The second line of each test case contains n integers a1,a2,…,an (1≤ai≤n). It is guaranteed that a1≤a2≤…≤an.

Output
For each test case, output the minimum number of colors Nezzar can use.

Example
inputCopy
5
6
1 1 1 2 3 4
5
1 1 2 2 3
4
2 2 2 2
3
1 2 3
1
1
outputCopy
3
2
4
1
1
Note
Let’s match each color with some numbers. Then:

In the first test case, one optimal color assignment is [1,2,3,3,2,1].

In the second test case, one optimal color assignment is [1,2,1,2,1].

题解:

#include <bits/stdc++.h>
using namespace std;
int a[200];
int main()
{
	int t;
	cin>>t;
	while(t--)
	{
		int b[200]={0};
		int n;
		cin>>n;
		int ans=-1;
		for(int i=0;i<n;i++)
		{
			scanf("%d",&a[i]);
			b[a[i]]++;
			if(b[a[i]]>ans) ans=b[a[i]];
		}
		cout<<ans<<endl;
	}
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/75363
推荐阅读
相关标签
  

闽ICP备14008679号