赞
踩
近来, 在python环境下使用xgboost算法作若干的机器学习任务, 在这个过程中也使用了其内置的函数来可视化树的结果, 但对leaf value的值一知半解; 同时, 也遇到过使用xgboost
内置的predict
对测试集进行打分预测, 发现若干样本集的输出分值是一样的. 这个问题该怎么解释呢? 通过翻阅Stack Overflow 上的相关问题, 以及搜索到的github上的issue回答, 应该算初步对这个问题有了一定的理解, 特来分享!
在这里, 使用经典的鸢尾花的数据来说明. 使用二分类的问题来说明, 故在这里只取前100行的数据.
from sklearn import datasets
iris = datasets.load_iris()
data = iris.data[:100]
print data.shape
#(100L, 4L)
#一共有100个样本数据, 维度为4维
label = iris.target[:100]
print label
#正好选取label为0和1的数据
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1</
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。