当前位置:   article > 正文

LangChain+ChatGLM大模型应用落地实践(一)_langchain 落地应用

langchain 落地应用

LLMs的落地框架(LangChain),给LLMs套上一层盔甲,快速构建自己的新一代人工智能产品。

一、简介

LangChain是一个近期非常活跃的开源代码库,目前也还在快速发展中,旨在让大家快速构建自己的LLM对话产品。当然,该框架也支持自定义接入其他机构、企业开源的LLMs的API和模型(比如:ChatGLM、文心一言等)。

届时,LangChain的版本已经更新到0.0.123,目前保持着每天1发版的更新速度。

LangChain主要包括以下几个主要的模块:

Prompt Templates:支持自定义Prompt工程的快速实现以及和LLMs的对接;
LLMs:提供基于OpenAI API封装好的大模型,包含常见的OpenAI大模型,也支持自定义大模型的封装;
Utils:大模型常见的植入能力的封装,比如搜索引擎、Python编译器、Bash编译器、数据库等等;
Chains(重点):大模型针对一系列任务的顺序执行逻辑链;
Agents(重点):通常Utils中的能力、Chains中的各种逻辑链都会封装成一个个工具(Tools)供Agents进行智能化调用;
其中,Chains和Agents两个模块是LangChain的亮点,也是后续教程中会重点展开的内容。

目前LangChain支持调用的OpenAI模型可以在官方文档([文档, OpenAI, Models])中查询;

LangChain 支持大量用例,例如:

针对特定文档的问答:根据给定的文档回答问题,使用这些文档中的信息来创建答案。
聊天机器人:构建可以利用 LLM 的功能生成文本的聊天机器人。
Agents:开发可以决定行动、采取这些行动、观察结果并继续执行直到完成的代理。

二、LangChain源码

Github 地址
https://github.com/imClumsyPanda/langchain-ChatGLM

https://github.com/hwchase17/langchain

三、租用云服务器实例

https://www.lanrui-ai.com/
注意收费有点贵,只用于训练时使用!!!

四、部署实例

  1. 实例开启后,选择JupyterLab进入后,启动命令行。

在这里插入图片描述
在这里插入图片描述

  1. 环境准备与数据下载:

    #克隆LangChain-ChatGLM项目
    git clone https://github.com/imClumsyPanda/langchain-ChatGLM.git
    ​
     进入langchain-ChatGLM文件夹
    cd langchain-ChatGLM/
    
    #项目中 pdf 加载由先前的 detectron2 替换为使用 paddleocr,如果之前有安装过 detectron2 需要先完成卸载避免引发 tools 冲突
    pip uninstall detectron2​
    如果不需要对 pdf 格式文件读取,可不安装 detectron2;如需对 pdf 文件进行高精度文本提取,建议按照如下方法安装:
    $ git clone https://github.com/facebookresearch/detectron2.git
    $ cd detectron2
    $ pip install -e .
    
    #安装依赖
    pip install -r requirements.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple
    ​
    #安装protobuf   --- 安装失败也可以跳过
    pip install protobuf==3.20.1
    ​
    #安装peft
    pip install peft
    ​
    #将gradio升级到3.28.3
    pip install --upgrade gradio
    ​
    #安装git1fs
    git lfs install
    ​
    #如果安装安装git1fs时出现以下错误:git: 'lfs' is not a git command. See 'git --help'. 则使用以下指令。
    ​
    curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
    sudo apt-get install git-lfs
    ​
    #退回根目录
    cd ~
    ​
    #创建存放数据的文件夹(autodl-tmp为数据盘,将模型下载到数据盘中)
    mkdir data/your_path/
    ​
    #下载LLM模型(文件比较大需要等一会)
    git clone https://huggingface.co/THUDM/chatglm-6b data/your_path//chatglm-6b
    ​
    #下载Embedding模型
    git clone https://huggingface.co/GanymedeNil/text2vec data/your_path/text2vec
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
  2. 修改配置文件

    在langchain-ChatGLM/configs/model_config.py中修改Embedding、LLM模型名称及地址:
    在这里插入图片描述
    修改LLM模型地址:
    在这里插入图片描述

    LLM_MODEL = “chatglm-6b” //LLM名称

    OPEN_CROSS_DOMAIN = True // 开启跨域

在langchain-ChatGLM/webui.py中修改端口号为6006。
在这里插入图片描述

  1. 启动对话web页面
    进入langchain-ChatGLM文件中

    python webui.py
    
    • 1

    启动成功
    在这里插入图片描述

langchain-ChatGLM WebUI成功部署,就可以导入自己的知识库进行测试了。
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/102144
推荐阅读
相关标签
  

闽ICP备14008679号