赞
踩
下面是一个基于PyTorch实现的卷积神经网络回归模型的示例代码:
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision.datasets import CIFAR10 from torchvision.transforms import ToTensor, Normalize from tqdm import tqdm # 定义卷积神经网络模型 class CNNRegressor(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 32, 3, padding=1) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, 3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, 3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.fc1 = nn.Linear(128*4*4, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): x = nn.functional.relu(self.bn1(self.conv1(x))) x = nn.functional.max_pool2d(x, 2) x = nn.functional.relu(self.bn2(self.conv2(x))) x = nn.functional.max_pool2d(x, 2) x = nn.functional.relu(self.bn3(self.conv3(x))) x = nn.functional.max_pool2d(x, 2) x = x.view(-1, 128*4*4) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return x # 加载数据集 train_dataset = CIFAR10(root='./data', train=True, download=True, transform=Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])) train_dataloader = DataLoader(train_dataset, batch_size=128, shuffle=True) test_dataset = CIFAR10(root='./data', train=False, download=True, transform=Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])) test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=False) # 定义模型、损失函数、优化器 model = CNNRegressor() criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): model.train() train_loss = 0.0 for inputs, targets in tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{num_epochs}", unit="batch"): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets.float().unsqueeze(1)) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) train_loss /= len(train_dataset) model.eval() test_loss = 0.0 with torch.no_grad(): for inputs, targets in tqdm(test_dataloader, desc="Testing", unit="batch"): outputs = model(inputs) loss = criterion(outputs, targets.float().unsqueeze(1)) test_loss += loss.item() * inputs.size(0) test_loss /= len(test_dataset) print(f"Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}")
这个示例代码使用了CIFAR10数据集,卷积神经网络模型包括3个卷积层和2个全连接层,优化器使用Adam,训练10个epoch。在训练期间,使用了PyTorch的DataLoader和tqdm库来进行数据迭代和进度条显示,同时计算训练集和测试集的损失。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。