当前位置:   article > 正文

Safetensors,高效安全易用的深度学习新工具

safetensors

大家好,本文将介绍一种为深度学习应用提供速度、效率、跨平台兼容性、用户友好性和安全性的新工具。

Safetensors简介

Hugging Face开发了一种名为Safetensors的新序列化格式,旨在简化和精简大型复杂张量的存储和加载。张量是深度学习中使用的主要数据结构,其大小会给效率带来挑战。

Safetensors结合使用高效的序列化和压缩算法来减少大型张量的大小,使其比pickle等其他序列化格式更快、更高效。这意味着,与传统PyTorch序列化格式pytorch_model.binmodel.safetensors相比,Safetensors在CPU上的速度快76.6倍,在GPU上的速度快2倍。

 使用Safetensors的好处

Safetensors具有简单直观的API,可以在Python中序列化和反序列化张量。这意味着开发人员可以专注于搭建深度学习模型,而不必在序列化和反序列化上花费时间。

可以用Python进行序列化,并方便地使用各种编程语言和平台(如C++、Java和JavaScript)加载生成的文件,这样就可以实现在不同的编程环境中无缝共享模型。

Safetensors针对速度进行了优化,可以高效处理大型张量的序列化和反序列化,因此它是使用大型语言模型的应用程序的绝佳选择。

它混合使用了有效的序列化和压缩算法,以减小大型张量的大小,与其他序列化格式(如pickle)相比,性能更快、更高效。

为了防止序列化张量在存储或传输过程中出现损坏,Safetensors使用了校验和机制。这保证了额外的安全性,确保存储在Safetensors中的所有数据都准确可靠。此外,它还能防止DOS攻击。

在使用多个节点或GPU的分布式环境中工作时,只在每个模型上加载部分张量是很有帮助的。BLOOM利用这种格式在8个 GPU上加载模型仅需45秒,而普通PyTorch加权则需要10分钟。

使用Safetensors

在本节中我们将介绍safetensors API,以及如何保存和加载张量文件。可以使用pip管理器安装safetensors

pip install safetensors

本文将使用Torch共享张量中的示例来搭建一个简单的神经网络,并使用PyTorch的safetensors.torch API保存模型。

  1. from torch import nn
  2. class Model(nn.Module):
  3. def __init__(self):
  4. super().__init__()
  5. self.a = nn.Linear(100, 100)
  6. self.b = self.a
  7. def forward(self, x):
  8. return self.b(self.a(x))
  9. model = Model()
  10. print(model.state_dict())

正如所看到的,已经成功创建了模型。

OrderedDict([('a.weight', tensor([[-0.0913, 0.0470, -0.0209, ..., -0.0540, -0.0575, -0.0679], [ 0.0268, 0.0765, 0.0952, ..., -0.0616, 0.0146, -0.0343], [ 0.0216, 0.0444, -0.0347, ..., -0.0546, 0.0036, -0.0454], ...,

现在我们将通过提供model对象和文件名来保存模型,然后把保存的文件加载到使用nn.Module创建的model对象中。

  1. from safetensors.torch import load_model, save_model
  2. save_model(model, "model.safetensors")
  3. load_model(model, "model.safetensors")
  4. print(model.state_dict())
OrderedDict([('a.weight', tensor([[-0.0913, 0.0470, -0.0209, ..., -0.0540, -0.0575, -0.0679], [ 0.0268, 0.0765, 0.0952, ..., -0.0616, 0.0146, -0.0343], [ 0.0216, 0.0444, -0.0347, ..., -0.0546, 0.0036, -0.0454], ...,

在第二个示例中,我们将尝试保存使用torch.zeros创建的张量,为此将使用save_file函数。

  1. import torch
  2. from safetensors.torch import save_file, load_file
  3. tensors = {
  4. "weight1": torch.zeros((1024, 1024)),
  5. "weight2": torch.zeros((1024, 1024))
  6. }
  7. save_file(tensors, "new_model.safetensors")

为了加载张量,我们将使用load_file函数。

load_file("new_model.safetensors")
  1. {'weight1': tensor([[0., 0., 0., ..., 0., 0., 0.],
  2. [0., 0., 0., ..., 0., 0., 0.],
  3. [0., 0., 0., ..., 0., 0., 0.],
  4. ...,
  5. [0., 0., 0., ..., 0., 0., 0.],
  6. [0., 0., 0., ..., 0., 0., 0.],
  7. [0., 0., 0., ..., 0., 0., 0.]]),
  8. 'weight2': tensor([[0., 0., 0., ..., 0., 0., 0.],
  9. [0., 0., 0., ..., 0., 0., 0.],
  10. [0., 0., 0., ..., 0., 0., 0.],
  11. ...,
  12. [0., 0., 0., ..., 0., 0., 0.],
  13. [0., 0., 0., ..., 0., 0., 0.],
  14. [0., 0., 0., ..., 0., 0., 0.]])}

Safetensors API适用于Pytorch、Tensorflow、PaddlePaddle、Flax和Numpy,可以通过阅读Safetensors文档来了解它。

简而言之,Safetensors是一种存储深度学习应用中使用的大型张量的新方法。与其他技术相比,它具有更快、更高效和用户友好的特点,此外它还能确保数据的保密性和安全性,同时支持各种编程语言和平台。通过使用Safetensors,机器学习工程师可以优化时间,专注于开发更优秀的模型。

强烈推荐在项目中使用Safetensors,许多顶级AI公司,如Hugging Face、EleutherAI和StabilityAI,都在他们的项目中使用了Safetensors。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/121538?site
推荐阅读
相关标签
  

闽ICP备14008679号