当前位置:   article > 正文

yolov8 模型部署_yolov8部署

yolov8部署

yolov8 模型部署

1. 模型部署

如果要用TensorRT部署YOLOv8,需要先使用下面的命令将模型导出为onnx格式:

yolo export model=yolov8n.pt format=onnx opset=12
  • 1

YOLOv8的3个检测头一共有80x80+40x40+20x20=8400个输出单元格,每个单元格包含x,y,w,h这4项再加80个类别的置信度总共84项内容,所以通过上面命令导出的onnx模型的输出维度为1x84x8400。

在这里插入图片描述
这样的通道排列顺序有个问题,那就是后处理的时候会造成内存访问不连续。为了解决这个问题,我们可以修改一下代码,具体做法是把ultralytics/nn/modules.py文件中的421行做如下修改,交换一下张量y的通道顺序:
在这里插入图片描述
修改代码后需要执行前面的安装命令pip install -e '.[dev]'使代码生效。这样修改后再执行上面的模型导出命令,模型的输出维度变为1x8400x84。
在这里插入图片描述

参考:YOLOv8初体验:检测、跟踪、模型部署
参考:
参考:
参考:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/129805
推荐阅读
相关标签
  

闽ICP备14008679号