赞
踩
接上篇:caffe中样本的label一定要从序号0开始标注吗?–caffe学习(15)
A:
1:数学上来说,损失函数loss值和label从0开始还是从1或者100开始是没有直接联系的,以欧式距离损失函数(Euclidean Loss)为例子:
2:铰链损失函数(Hinge Loss)这个loss就是SVM用到的loss。
对于多类的版本中,Crammer and Singer使用这种定义来分类多类:
loss最小化就是尽可能地使得所有和正确类别y差别最大的类别之和最小。WyX就是正确类别的分数Y。这里都没有加入正则化权重W,是为了简单。现在基本都有使用权重正则化来计算loss。
从SVM的分类函数来看我们依然没有看到和类别标号起始数值有关的证明。下面就开始分析caffe中的loss计算方法。
关于算法具体部分参考:http://blog.csdn.net/u014114990/article/details/47802993
WIKI:https://en.wikipedia.org/wiki/Hinge_loss
B:caffe中loss函数代码分析:
首先caffe是支持多个层计算loss的,所以有loss_weight这一个参数,当只有一个loss层时,该层的loss_weight自然为1,如果有两个loss层,权重可以死0.5+0.5或者自己生0.6+0.4之类的:
参考caffe官网中译版:
代码分析:
loss_layer.cpp:
void LossLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
// LossLayers have a non-zero (1) loss by default.
if (this->layer_param_.loss_weight_size() == 0) { //看这里
this->layer_param_.add_loss_weight(Dtype(1));
}
}
这只是初始化,下面看具体的前向计算以Hinge_Loss_layer.cpp为例:
void HingeLossLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const Dtype* label = bottom[1]->cpu_data();
int num = bottom[0]->num();
int count = bottom[0]->count();
int dim = count / num;
caffe_copy(count, bottom_data, bottom_diff);
for (int i = 0; i < num; ++i) {
bottom_diff[i * dim + static_cast<int>(label[i])] *= -1;
}
for (int i = 0; i < num; ++i) {
for (int j = 0; j < dim; ++j) {
bottom_diff[i * dim + j] = std::max(
Dtype(0), 1 + bottom_diff[i * dim + j]);
}
}
Dtype* loss = top[0]->mutable_cpu_data();
switch (this->layer_param_.hinge_loss_param().norm()) {
case HingeLossParameter_Norm_L1:
loss[0] = caffe_cpu_asum(count, bottom_diff) / num;
break;
case HingeLossParameter_Norm_L2:
loss[0] = caffe_cpu_dot(count, bottom_diff, bottom_diff) / num;
break;
default:
LOG(FATAL) << "Unknown Norm";
}
可以看到label 仅使用了一次,在:
for (int i = 0; i < num; ++i) {
bottom_diff[i * dim + static_cast<int>(label[i])] *= -1;
}
实际上对比上面的公式这里是很容易理解的,从实现的角度也没有看到和label的起始值有关的数据。因此这应该是一个magic,我们使用的时候还是遵照从0开始标号就好。
代码的最后实现了两种归一化函数L1和L2,见下篇分析:
L1归一化和L2归一化范数的详解和区别
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。